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Abstract

Radar (RAdio Detection And Ranging) uses radio waves to detect the presence
of a target and measure its position and other properties. This sensor has found
many civilian and military applications due to advantages such as possible
large surveillance areas and operation day and night and in all weather. The
contributions of this thesis are within applied signal processing for radar in two
somewhat separate research areas: 1) radar with array antennas and 2) radar
with micro-Doppler measurements.

Radar with array antennas: An array antenna consists of several small anten-
nas in the same space as a single large antenna. Compared to a traditional
single-antenna radar, an array antenna radar gives higher flexibility, higher
capacity, several radar functions simultaneously and increased reliability, and
makes new types of signal processing possible which give new functions and
higher performance.

The contributions on array antenna radar in this thesis are in three different
problem areas. The first is High Resolution DOA (Direction Of Arrival) Esti-
mation (HRDE) as applied to radar and using real measurement data. HRDE
is useful in several applications, including radar applications, to give new func-
tions and improve the performance. The second problem area is suppression
of interference (clutter, direct path jamming and scattered jamming) which of-
ten is necessary in order to detect and localize the target. The thesis presents
various results on interference signal properties, antenna geometry and sub-
array design, and on interference suppression methods. The third problem
area is measurement techniques for which the thesis suggests two measurement
designs, one for radar-like measurements and one for scattered signal measure-
ments.

Radar with micro-Doppler measurements: There is an increasing interest and
need for safety, security and military surveillance at short distances. Tasks in-
clude detecting targets, such as humans, animals, cars, boats, small aircraft and
consumer drones; classifying the target type and target activity; distinguishing
between target individuals; and also predicting target intention. An approach
is to employ micro-Doppler radar to perform these tasks. Micro-Doppler is
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created by the movement of internal parts of the target, like arms and legs of
humans and animals, wheels of cars and rotors of drones.

Using micro-Doppler, this thesis presents results on feature extraction for clas-
sification; on classification of targets types (humans, animals and man-made
objects) and human gaits; and on information in micro-Doppler signatures for
re-identification of the same human individual. It also demonstrates the abil-
ity to use different kinds of radars for micro-Doppler measurements. The main
conclusion about micro-Doppler radar is that it should be possible to use for
safety, security and military surveillance applications.



Preface

The contributions of this thesis are within applied signal processing for radar
in two somewhat separate research areas: 1) radar with array antennas and 2)
radar with micro-Doppler measurements. The thesis consists of two parts:

I An introduction to the areas addressed and publications included in this
thesis:.

1 Motivation and overview.

2 Radar basics.

3 Radar with array antennas.

4 Radar with micro-Doppler measurements.

5 Contributions of the included publications.
II Included publications within the two areas:

A Radar with array antennas.

B Radar with micro-Doppler.
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Part 1

Introduction






1 DMotivation and overview

A radar (RAdio Detection And Ranging) is a measurement device, by which
radio waves are transmitted, then reflected back from an object, called the
target, and again received and processed by the radar. By this, the radar can
detect the presence of a target and measure its position and other properties.

The radar was invented at the beginning of the 20th century but it was not
employed in large scale before the Second World War. There was an intense
development of radar systems just before and during the war [31, 32]. The
targets were mostly aircraft, but also ships.

The reason for developing and using radar sensors from the beginning was
that they have some unique and desired properties: Radar can have a large
measurement capacity. This means that a radar can cover a large surveillance
area or volume, thanks to the possible large field-of-view and to the possibility
to measure at long distances. Moreover, radar can operate at day and night and
in all types of weather. Later, additional advantages of radar have been utilized
and many new applications for radar measurements have been developed.

This thesis deals with radar in two research areas, first, radar with array an-
tennas and, then, radar with micro-Doppler measurements. This chapter tries
to summarize the research problems and challenges and also the results and
conclusions of the work by FOI (Swedish Defence Research Agency) in these
two research areas. Since the author of this thesis has been a part of FOI's
work, he has had the same research problems and challenges. This chapter
thus contains a motivation for the research of the author of this thesis and
also an overview of the research work done by FOI. Chapter 5, which describes
the publications included in the theses, is confined to publications where the
author of the thesis has contributed.

A radar uses an antenna for transmission of the radio signal and another or
the same antenna for the reception of the back-reflected signal. If a single large
antenna is replaced by several smaller antennas in the same space an array
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antenna is created. Some important advantages with replacing a single large
antenna by an array antenna are: By higher flexibility and higher capacity
an array antenna radar can replace several single antenna radars. An array
antenna radar has the possibility to handle several radar functions at the same
time, e.g. search for new targets, track several already detected targets and
perform target recognition or classification. Moreover, an array antenna radar
makes new types of processing possible, e.g. interference (clutter, direct path
jamming and TSI [see below]) suppression by STAP (Space Time Adaptive
Processing) and high resolution DOA (Direction of Arrival) estimation, giv-
ing new radar functions and higher performance. Array antenna radars also
provide increased reliability. The main drawback with array antenna radars is
the high cost and added complexity of hardware and large data volumes. See
Section 3.1 for some applications of radar with array antennas. (TSI [Terrain
Scattered Interference| are jammer signals scattered in ground or sea. Expla-
nations of clutter, direct path jamming and TSI can be found in Section 2.1).
Several aspects of incorporating signal processing for array antennas in radar
are addressed in [33].

At FOI, the main research problems with array antenna radars from 1993 until
now have been: designing and building radars with array antennas; calibration
of array antenna radars; how using array antennas in radar; performing DOA
estimation on real measured data; incorporating DOA estimation in monostatic
and bistatic radar; estimation of the number of targets; detection performance
of moving targets in interference (clutter, direct path jamming and TSI) in
monostatic and bistatic radar; suppression of interference in monostatic and
bistatic radar with and without hardware imperfections; modeling and simula-
tion of radar signals; learning properties of internal signals (noise) and external
signals (targets and interference); how to choose antenna geometry and design
subarrays in array antennas in order to minimize the clutter problem; and using
MIMO radar techniques for achieving a large antenna by sparsity. (Monostatic
radar has the transmitter antenna and receiver antenna at the same place while
bistatic radar have the antennas geographically separated. Almost all radars
operating today are monostatic. MIMO [Multiple Input Multiple Output] radar
can select the transmitted signal in all small transmitter antennas individually.)

FOI has achieved results and conclusions for all the above mentioned research
problems. To obtain the results, theoretic derivations, simulations and real
measured data from experimental array antenna radars have been used. The
summarizing conclusion is that it is possible to design and use array antennas
in radar. This knowledge and experience can be used for many civilian and



military applications.

We now turn to the second research area of this thesis. By using micro-Doppler
measurements a radar can see how internal parts of a target move. The goal
of FOI’s work is to use radar with such measurements for safety, security and
military surveillance at short distances (up to a few hundred meters) with
tasks such as detecting targets, classifying target type and target activity and
distinguishing between target individuals, see Section 4.1.

Important advantages with a micro-Doppler radar for such surveillance are:
the possibility to classify target type and activity by the internal movements
of the target; the possibility to operate in very varied environments and under
severe conditions, which is a general radar property; large surveillance area,
also thanks to a general radar property; and privacy preserving because the
human eye cannot see the identity of individual persons from micro-Doppler
measurements.

At FOI, the research problems with micro-Doppler radar from 2008 until now
have been: classification of target type; classification of target activity; ex-
tended target tracking of both target position and internal micro-Doppler pa-
rameters; detection of carried objects by humans; re-identification of the same
human; coping with target variations and different environments; and being
able to use different kinds of radars.

The main results of FOI’s micro-Doppler research are: classification of target
types (humans, animal and man-made objects) and of human gaits (walking,
running, etc.); suggestion of two types of features for classification and two
types of classifiers; the insight that detection of carried objects is very diffi-
cult; the likely existence of information in the micro-Doppler signatures for
re-identification of the same human individual; the understanding that there is
no use to track both target position and internal micro-Doppler parameters in
the same filter [34], and the ability to use different kinds of radars for micro-
Doppler measurements. FOI have conducted measurements with four different
real radars, some of which together with Saab AB, and also used data from
a fifth radar. The radars operate at different frequencies (9-16, 10, 24 and 77
GHz) and have different properties. Also a small test with simulated data has
been made. See the report [34] for a summary, including scientific conclusions,
of two main projects about micro-Doppler at FOI.

The conclusion of FOI’s micro-Doppler radar results is that this radar type
should be possible to use for safety, security and military surveillance at short
distances.



The first part of this thesis is an introduction to the research areas addressed
in it. Since the contributions of this thesis are within the two separate areas:
1) Radar with array antennas and 2) micro-Doppler radar, there will be intro-
ductions to these areas in Section 3 and 4, respectively. However, first there
will be a general introduction to the basics of radar in Section 2. Section 5 is
a summary of the publications included in the thesis. The second part of this
thesis contains the included publications within the two areas.



2 Radar basics

2.1 Radar principles

As already said, radar, or radar sensor, is a technique for detecting objects
and measuring their distance, direction, velocity and other properties with
radio waves at a distance. Radio waves are electromagnetic waves, with wave-
lengths for radar usually between 100 m and 3 mm, corresponding to frequen-
cies between 3 MHz and 100 GHz. The radar system emits a radio wave by a
transmitter antenna. The wave is reflected (or “scattered”) at a radar target,
i.e. the object, and then received by the radar receiver antenna. Often the
transmitter and receiver antennas are the same antenna. The principle is de-
picted in Figure 1. If a strong enough returning wave is observed, a target is
considered to be detected. The radio wave is often called radar signal or just
signal.

The distance (usually called range in radar), R, to the target is measured by
the time delay between transmitted and received wave

CT

where ¢ is the velocity of light and 7 is the time delay. SI units are used
throughout this thesis. The radial velocity of the radar target can be measured
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Figure 1: Principles of radar. A radio, i.e. electromagnetic, wave is scattered back from
a target. The phase fronts of the outgoing wave are the solid (cyan) lines. The phase
fronts of the back-scattered wave are the dashed (red) lines.
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Figure 2: Principles of velocity measurement by the Doppler effect: Left: A stationary
target. Right: A moving target. The moving target causes the wavelength of the reflected
wave to decrease, and therefore the frequency to increase, giving a positive Doppler shift.
The phase fronts of the outgoing wave are the solid (cyan) lines. The phase fronts of the
back-scattered wave are the dashed (red) lines. The distance between the phase fronts
of the back-scattered wave is smaller for the moving target due to the Doppler effect.

by the Doppler effect, which means that the wavelength, or equivalently the
frequency, of the returned wave is changed when reflected at a target moving
radially relative the radar. For example, the wavelength will become shorter,
and the frequency higher, when the target is approaching the radar. Figure 2
illustrates this. The relation between the Doppler frequency fq, which is the
frequency deviation for the received wave from the transmitted wave, and the
radial velocity is

fa=— (2)

where v,. is the relative radial velocity between radar and target, with positive
sign when they are approaching each other, and )\ is the radar wavelength.
Equation (2) is valid for low velocities (v, < ¢ ). The non-radial target velocity
can be measured by tracking the target in direction for some time.

The direction to, or DOA (Direction of Arrival) of, the radar target is mea-
sured by utilizing a direction dependent antenna. The antenna has different
amplification, or gain, in different directions. It is directive. Usually it has a
main beam with the largest gain and sidelobes and backlobes with much lower
gain (Figure 3). Figure 4 illustrates the DOA measurement of a radar. An-
other common task for the radar is to determine the target type or identity,
also called target classification or target recognition.

Besides the desired radar signal, i.e. the target reflection, the radar receiver
senses undesired signals. All objects in the universe with a temperature above
zero Kelvin will radiate random electromagnetic waves, called thermal noise.



Backlobes

Figure 3: lllustration of the antenna gain in different directions with antenna main beam,
sidelobes and backlobes.

Signal
Str‘ength

T 1 T >
A B C Time

Figure 4: Principles of DOA (direction) measurement by a directive antenna. The an-
tenna, which has the antenna gain in Figure 3, is rotating clockwise. The antenna beam is
shown at three time instants A, B and C. Below the illustrations of the beam the received
signal strength is shown as a function of time. The DOA of the target is estimated as
the direction with the maximum signal strength, here at time B.
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Figure 5: Radar target and interference scenario with UAVs and a ground vehicle.

The receiver noise is mainly internally generated thermal noise at the used
radar frequencies. Fxternal noise, which is caused by external sources, such as
the sun, the atmosphere and man-made equipment like computers and cars,
is received by the radar antenna and can be a problem for some radar types.
Clutter is disturbing reflected radar signals from ground or other uninterest-
ing objects. What is clutter depends on the application. For example, when
looking for aircraft with an air surveillance radar, the ground is clutter, but
when looking for properties of the ground from a satellite-borne remote sensing
radar, the ground is the “target”. Another type of undesired signal is jamming,
which are signals intentionally transmitted by an adversely to disturb the radar.
Jamming can be direct path jamming or scattered jamming. The latter is often
called TSI (terrain scattered interference), terrain scattered jamming or hot
clutter. Also, non-intentional interference, such as broadcasting radio and TV
signals, can disturb the radar. In this thesis all types of undesired signals,
except the receiver noise, is called interference. See Figure 5 for an exam-
ple scenario for a radar with different kinds of signals, both target signal and
interference signals.

2.2 Radar applications

Radar has very diverse utility with many applications within civil, scientific,
security and military areas. Some examples are:

e Surveillance of air, sea and ground traffic.
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e Anti-collision warning for aircraft and ships.

e Navigation of ships.

e Automobile radar: driving aid and collision prevention and mitigation.
e Speed limit enforcement in road traffic.

e Weather radar.

e Distance (range) measurements, e.g. levels in tanks, altitude of aircraft,
and industrial length measurements [35].

e Security surveillance within short distances.

e Remote sensing from aircraft or satellite from long distances to collect in-
formation about the earth surface for agriculture, forestry, environmental
protection, humanitarian, scientific, military and other uses. Also remote
sensing of other planets or moons like the Magellan mission to Venus [36].

e Military uses in fighter aircraft radars, missile radar seekers, fire control
radars, etc.

2.3 Advantages and drawbacks with radar

Radar sensors have several advantages compared to electro-optical (EO) sen-
sors, such as video and IR (infra-red) cameras. Here some advantages are listed.
Radar:

e Can operate at day and night and in all weather. A radar can be much
less affected by the weather than EO sensors.

e Can operate in dusty, dirty, hot, foggy and wet environments [35, 37|.
e Can measure radial velocity very accurately.

e Can measure distance (range) directly. Can measure short distances
(down to millimeters for industrial measurement radar [35]) or long dis-
tances (up to 4000 km for skywave OTH [Over-The-Horizon| radar [3§]
or even longer for space radar).

e Can have a large capacity: Can have a large surveillance area or volume
capability. Can have a large field-of-view combined with seeing targets
at long ranges.
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e Is less vulnerable to combating in military and security applications,
thanks to the long-range capability.

e Can be installed concealed behind a covering surface.

e Isless affected by human clothing choices and is human privacy preserving
in security applications.

Radar sensors also have some drawbacks. Radar:

e Often has low cross range (perpendicular to line-of-sight) resolution com-
pared to EO sensors. An exception is satellite based radar for remote
sensing of the earth surface, where Synthetic Aperture Radar (SAR) and
EQO sensors have comparable resolution.

e Has not in general yet reached so far as EO sensors in reducing size,
weight, power consumption and cost. For some types of EO sensors this
reduction has been possible thanks to a large civil employment. However,
the civil employment of radar sensors is increasing. Another reason for
this reduction for EO sensors is the shorter wavelength in EO sensors
which gives a high resolution for free, while radar sensors need to utilize
the signal to the outermost.

e Delivers output which looks different than what the human eye is accus-
tomed to. This can be an impediment to humans.

2.4 Radar signal processing
2.4.1 Structure of transmitted and received signals

The transmitted radar signal is usually pulsed with a certain PRF (Pulse Rep-
etition Frequency), see Figure 6, left. The time between the pulses is called
the PRI (Pulse Repetition Interval). PRI can also be a synonym to the term
“radar pulse”, see Figure 6. The pulses have some kind of pulse modulation,
which can be amplitude, frequency and phase modulation. The received radar
signal (Figure 6, right) is sampled in time. The samples in the interval be-
tween the start of two pulses, i.e. within the same PRI, correspond to different
time delays of the transmitted pulse and therefore to different target ranges.
These samples are also called range bins and the sampling is called range-bin-
to-range-bin sampling. Since this sampling is the fastest time sampling, it is
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Transmitted signal ~ Pulse modulation Received signal Echoes from one target
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Figure 6: Left: Transmitted radar pulses. Right: Received radar pulses.

also called fast-time sampling. The same time-sample within the PRIs but
for different pulses or PRIs are called different radar pulses (or PRIs). Since
this sampling is slower than range-bin-to-range-bin sampling, it is called called
slow-time sampling.

If a single antenna is replaced by several smaller antennas, called antenna
elements, an array antenna is obtained. The antenna elements themselves
may be directive but by summing the received signals from the elements the
array antenna will become more directive than the elements. The summing,
called beamforming, can be done before or after the ADC (Analog to Digital
Converter) giving an analog or digital array antenna. It is also possible to
perform part of the summation before the ADC and part after the ADC by
analogously summing groups of antenna element, called (analog) subarrays,
then digitize the sum signals, and finally sum the digital signals. The digital
signals from the antenna elements, if all antenna element signals are digitized,
or the digital signals from analog subarrays are called antenna channels.

The antenna elements of an array antenna can be positioned in different ways.
They can be placed on a line, giving a linear antenna. A ULA (Uniform
Linear Array) is a common special case where the identical elements are placed
equidistantly on a line. A planar antenna is an array antenna with all elements
on a plane. A conformal antenna is an array antenna with its elements on a
bent surface, often the outer surface of the radar platform. An array antenna
can be seen as sampling the receiving radio wave at different positions in space.
This is also called space sampling. Some examples of array antennas are shown
in Figure 9 (planar and linear array), 11 (linear array), 12 (planar array) and
13 (linear array). Figure 16 shows two conformal antennas, which have been
designed and built by FOI.

The samples in fast-time, slow-time and space can be arranged in a radar
data cube with samples from each of the three types of sampling in a separate
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Figure 7: Left: The radar data cube. Right: space-slow-time and space-fast-time 2D
snapshots as slices of the radar data cube.

dimension. See Figure 7, left. We then also talk about the fast-time, slow-time
and space dimensions of the received radar signal.

2.4.2 Processing of the received signals

The traditional processing of the received radar signal can be divided in a linear
processing part and a non-linear processing part, see Figure 8. The task for the
linear processing is to change to a more revealing signal domain and to enhance
the target signal while suppressing interference. While suppressing noise and
interference, there are two ratios: the Signal to Noise Ratio (SNR), if there is
no interference except receiver noise, or the Signal to Interference plus Noise
Ratio (SINR), if both receiver noise and external interference is present. If
SNR or SINR is increased, it will facilitate the target detection and parameter
estimation in the non-linear processing. The change of signal domain is usually
from fast-time samples (time in the same PRI) to range bins, by linear filtering
called pulse compression; from slow-time samples (radar pulses) to Doppler
channels, by Doppler filtering; and from antenna channels to antenna beams
or DOAs, by beamforming. See Figure 7, left and Figure 8. This filtering can
be performed in one of the mentioned dimensions at a time or in two or all
three dimensions simultaneously. Then 1D, 2D or 3D snapshots are extracted
from the radar data cube and used in the processing, see Figure 7, right. The
three new signal domains (range, Doppler and antenna beam/DOA) are better
suited for the target detection and the target parameter estimation. In the
linear processing, the order of the processing can be changed and processing
of the same type can be cascaded, which is indicated by the possible loop in
Figure 8.

The traditional non-linear processing (Figure 8) has several tasks. First, the
target must be detected. A more developed form of detection is to estimate
the number of targets or signal sources. Then, target parameters should be
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Figure 8: Block diagram of traditional radar signal processing.
One radar data cube is processed at a time. The gray wide solid lines show where the

data cube can travel in the diagram. At a fork symbol , where the line branches
out in two lines, the data cube will proceed in exactly one direction. This means that
the data cube only goes through one of the linear processing blocks at a time. With the

copy symbol O the data cube can either proceed in one of the branches or a copy of
the same data cube can proceed in each of the branches. In the summation symbol @,
two data cubes can be added together, e.g. measured target signal added to simulated
noise. Before the “Features” and “Classification” blocks, a suitable part of the data cube
is cut out in the “"Conventional Detect. & Estim” block. Compare with Figure 28. The
models consist of steering vectors, covariance matrices, covariance matrix tapers [39] and
parameter structures.



16

estimated, of which the basic parameters are range, DOA and radial velocity.
A more higher-level parameter is the target type or identity which is the task
of the target classification. The estimated parameters is then usually fed to a
target tracker which creates target tracks. The target tracking and subsequent
processing in radar is traditionally called data processing and is not shown in
Figure 8. (Non-linear means as usual that an operation H does not fulfill the
linearity condition: H(ax+p8y) = aH(x)+BH(y), where o and 8 are arbitrary
scalars and x and y are arbitrary input signals).

There is another, non-traditional, approach to detection and tracking, called
Track Before Detect (TkBD or TBD), which is still not used much in radar.
TkBD means merging the detection, estimation and tracking into a single op-
eration. Then the tracker works on the whole, non-detected, radar signal and
tracks both the target parameters and the presence of the target. The main
advantage is the possible detection and tracking at lower SNR. The main draw-
back is the high computation complexity. See [40, 41, 42] for more on this
approach.

A Matlab [43] and Octave [44] software toolbox, called DBT and mainly devel-
oped by the author of this thesis, contains linear and nonlinear signal processing
according to Figure 8 and also signal simulation, import of measured signals,
and modeling of radar antennas & waveforms and of imperfections [15, 45].
A limited version of DBT is available for download at Blekinge Institute of
Technology [46].
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3 Radar with array antennas

We will now concentrate on radar with array antennas, the first research area
of this thesis.

3.1 Some applications

Here we give some examples of applications of radar with array antennas. Fig-
ure 9 shows the dutch frigate Tromp of the De Zeven Provincién class, which
possesses two main array antenna radars. The large fore radar, called APAR
(Active Phased Array Radar), has four fixed planar antenna arrays. It is a
multifunction radar with array beamforming horizontally and vertically (prob-
ably) and the following capabilities: air and sea target tracking, horizon search,
limited volume search, surface naval gunfire support, guidance of semi-active
radar homing missiles and Electronic Counter-Countermeasures (ECCM) [47].
The large aft radar, called SMART-L (Signaal Multibeam Acquisition Radar
for Tracking, L band) is a long range volume search radar and has a verti-
cal linear array antenna. The antenna has array beamforming vertically and
is rotating horizontally. Figure 10 is an illustration of a multifunction naval
radar using the simulation software SADM [48] and the visualization software
SIMDIS [49].

The Swedish AEW&C (Airborne Early Warning & Control) radar PS-890 on
top a Saab 340 AEW&C aircraft is shown in Figure 11. An AEW&C system has
the task to search for and detect aircraft and ships at long distances (ranges)
and direct fighter and attack aircraft [51]. The PS-890 is operating at 3 GHz
and has a 192 element linear array antenna with horizontal array beamforming
[52].

In Figure 12, a mock-up of the antenna of the radar EuroRADAR CAPTOR-E
for the fighter aircraft Eurofighter Typhoon is depicted. CAPTOR-E is under
development and is a radar with a planar array antenna with 1300 to 1500
antenna elements. It will enhance the older version of the Eurofighter radar
and perform task such as detection, tracking and recognition/classification of
air targets, also with clutter and jamming background; detection and locating
slow moving ground targets; imaging of the earth surface with automatic target
detection and classification; and noise jamming [54] .

Radar with array antennas is also increasingly finding civilian applications. For
example, such radars are used as weather radar for “early warning detection
of severe impending weather” [56], simultaneous air traffic control and weather
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Figure 9: Left: The frigate HNLMS Tromp (F803) of the Royal Netherlands Navy with
the APAR and the SMART-L radars. Middle: The APAR Naval radar with two of the
four fixed planar antenna apertures visible. Right: The SMART-L radar. The rotating
antenna is the dark rectangle. It is a vertically steerable array. All three photos: Royal
Netherlands Navy / Koninklijke Marine [50].

tracking [56], security surveillance of “critical infrastructures” and “integrity
sensitive areas” [57|, “obstacle detection and collision avoidance systems in
mobile industrial, farming and forestry equipment” [57] and automotive driver
assistance systems [58].

For research purposes a horizontal linear digital array with 12 digital channels,
called DigAnt, was designed and built by FOA (today FOI) and Ericsson Mi-
crowave Systems (today Saab Electronic Defence Systems) during the 1990s
[59, 60]. See Figure 13 and 14. Tt has been used at FOI for research on
antennas, microwave electronics, calibration, DOA estimation, direct jammer
suppression, scattered jamming, radar processing and bistatic radar. Several
of the publications in this thesis use measured data from the DigAnt.

At FOI we have the last years concentrated our radar antenna and microwave
electronics research to radars on small airborne radar platforms, such as small
UAVs (Unmanned Aerial Vehicles, Figure 15), with conformal antennas (Fig-
ure 16), among other because these give a difficult radar design problem. The
requirements on space, weight and power consumption are higher than for,
for example, naval radar and ground based radar, and this necessitates new
hardware technologies, such as RF-MEMS (Radio Frequency MicroElectroMe-
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Figure 10: Multifunction radar on a naval ship. Five simultaneous beams are shown, one
yellow (direction 10 o'clock) and four gray. The gray beams are search beams searching
for different types of target and at different elevations and ranges. The yellow beam is
tracking a target. Simulation by SADM [48] and visualization by SIMDIS [49].

chanical Systems) [65]. A moving radar, such as an airborne radar, also gives
larger problems with interference than a stationary radar, because the clut-
ter has a wider Doppler bandwidth and TSI appears as a larger number of
jammers.

The work on array antenna radar which is covered by this thesis is described
in Section 5.

3.2 Radar signal model

In this section we will show a standard mathematical model of the received
radar signal from different kinds of sources, valid for both targets and interfer-
ence. This model is commonly used in the signal processing of these signals.
We denote scalar quantities with italic non-bold font, vectors with lower-case
upright bold font (not upright for Greek letters) and matrices with upper-case
upright bold font.

The radar array signal processing in this thesis emanates from the follow-
ing standard signal model. The received space (antenna channels), slow-time
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Figure 11: The Swedish Airborne Early Warning radar PS-890 with the array antenna on
top of the aircraft fuselage at the Swedish Armed Forces’ Airshow 2010. The linear array
antenna is the box on the back of the aircraft. Photo by “Gnolam” [53].

I

Figure 12: Left: Mock-up of the array antenna of the fighter radar CAPTOR-E of a
Eurofighter Typhoon without nose. Right: Close up on the array antenna, which is a
planar array. Photo by “Bin im Garten". Modified by “MagentaGreen”. Source: [55].
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Figure 13: The FOI DigAnt receiving array antenna [59, 60] in an anechoic chamber.
The digital array is linear in the horizontal direction with 12 digital channels. It was
designed and built by FOA (FOI) and Ericsson Microwave Systems (Saab Electronic
Defence Systems). This antenna is used in Publication 1 (reference [3]), 2 (reference [4])
and 4 (reference [6]) and in [27, 28, 29, 59, 60, 61, 62, 63, 64]. Photo by FOL.
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Figure 14: Block diagram of the FOI DigAnt receiving array antenna in Figure 13. Image
by Lars Pettersson, Per Grahn and Svante Bjorklund.
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gro1

Figure 15: The FOI experimental conformal array antenna mounted on a UAV. Image
from [66], also present in in [7, 19]. Image by Roland Erickson.

Figure 16: Experimental conformal antennas on a half-cylinder (diameter 30 cm) for 16-
18 GHz, designed and built by FOI. Both antennas have 35 x 7 antenna elements. Left:
Planar facets. Photo from [66]. Also present in [7, 19]. Right: Smoothly bent aperture.
Photo Svante Bjérklund.
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(radar pulses) and fast-time (target range) signal x; from K, point sources,
which is a complex baseband signal, can be written

K
Xg = Zakv(ekafdkafk)a (3)
=1

where oy, is the amplitude of the k" point source, and 8}, is the DOA (Direction
Of Arrival), f4, is the Doppler frequency and 7y is the range to this point
source. The DOA 6 can be either a single angle or a vector of two angles, e.g.
azimuth and elevation angles. The received signal is the signal after the antenna
elements, analog antenna subarrays (if any), analog receiving electronics such as
amplifiers, filters and mixers and after analog to digital conversion (ADC). The
inevitable receiver noise is not included in the model x5 in (3). A point source
can be a point target, one of a collection of scattering points of a composite
target, a direct path jammer, scattering points of scattered jamming, scattering
points of clutter; or some other interference source. See also Section 2.1 about
different kinds of interference. The complex amplitude «; of the source can be
either deterministic or random. The number of “independent” point sources is
called the signal rank. The vector v(0y, fay,7r) is the steering vector, which
is a model of the received radar signal from a point source at a certain DOA,
Doppler frequency and range. Remember, DOA (direction), Doppler frequency
and range are the three dimensions of the radar data cube (Figure 7).

If the three dimensions of the data cube are independent of each other, which
is a common assumption, the steering vector can be separated into

v(0, fa,7) = c(7) ®@ b(fa) @ a(0), (4)

where a(8) is the spatial (antenna channels/DOA) steering vector, b(f;) slow-
time (radar pulses/Doppler) steering vector, c(7) is the fast-time (range) steer-
ing vector and ® denotes the Kronecker product [67].

Depending on the type of interference to handle and what processing to per-
form, one or two of the three signal dimensions in (3) and (4) can be omitted.
Compare with the 1D, 2D and 3D snapshots in Figure 7 and in Section 2.4.2
and see later in Section 3.3.2 - 3.3.4 for examples.

Now, we give examples of some steering vectors. A fast-time steering vector
c(7) has the same number of elements as the number of (fast-time) samples
within a PRI and contains the pulse modulation, time delayed to the range of
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the point source. A standard slow-time steering vector for regular sampling in
slow-time is

b(f4) = [€J'27ffutTR'0’.._’eJ'QWfalTR'(M*l)}T7 (5)

where fy is the Doppler frequency, Tr = 1/PRF is the PRI, M is the number
of radar pulses. A7 denotes the transpose of a matrix (or vector) A.

The spatial steering vector for a ULA with isotropic (see below) antenna ele-
ments is

a(a) _ [eszT"d-O-sine ’ZT’rd-(Nfl)-sine}T7 (6)

geeey

where 0 is the single-angle DOA (Figure 17), d is the inter-element distance,
A is the radar wavelength and N is the number of antenna elements. An
isotropic antenna element has the same radiation in all directions, which is not
physically possible but an often used model. Equation (6) can be understood by
studying Figure 17. Narrowband signals and far-field conditions are assumed.
Narrowband means that the bandwidth of the pulse modulation is much smaller
than the carrier frequency. For us, this has the implication that the different
propagation times of the radio wave to the antenna elements can be treated as
phase shifts. For us, far-field means that a point source is so far away from the
antenna that the radio wave from the source is a plane wave over the antenna.

The steering vector for a more general antenna (arbitrary antenna element
positions and arbitrary antenna element patterns) can be expressed as

a(k) = [go(k)e/* ™, ... g1 (k) T (7)

with k = 27”1;, and where g, (k) = g,(k) is the antenna pattern for the n'
antenna element and r, is the position of the same element, and k = 12(9)
is the direction vector of the impinging wave. Still, narrowband signals and
far-field conditions are assumed. The “direction of an impinging wave” is a
vector in the 3D space and the corresponding DOA 6 is a parametrization of
this direction with one or two angles. See Figure 17 for an example.

The steering vector a(@) can include the effects of subarrays. Signal processing
for radar with subarrays are addressed in [33, 68].
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Figure 17: Antenna geometry for a ULA. The angle 0 is the DOA. The antenna element
separation is d. The two arrows from the upper right corner of the illustration towards
the lower left corner is the direction of the impinging radio wave.

The total received radar signal x from a target (a point target or a collection
of scattering points), interference and noise is

X = X¢ + Xe + Xj + Xgsi + 1, (8)

where X, X¢, X; and X are the received radar signals from the radar target,
from clutter, direct path jamming and TSI, respectively, and n is the receiver
noise. Each of the signals x, X., X;j and X can be modeled by (3). The receiver
noise is often modeled as white Gaussian noise in the used radar dimensions.
See Section 3.3.2 - 3.3.4 for more on different kinds of interference.

3.3 Detection of moving targets in interference

Target detection and interference suppression is a compound problem. In or-
der to detect the target, the interference must be suppressed sufficiently. In
Section 3.3.1 we show the basic interference suppression filter. In Section 3.3.2
- 3.3.4 we describe frequent interference, namely direct path jamming, clutter
and TSI.

3.3.1 Interference suppression and target detection

Suppression of interference in radar is usually performed with linear FIR ( Finite
Impulse Response) filters. The FIR filter is
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y=wx, 9)

where x is a snapshot of the received radar signal. The number of coefficients
(minus one) in the weight vector w we call the DoF (Degrees of Freedom).
Usually, the filter weights are computed as [69, 70, 71, 72]

Wopt = nR;]'WO, (]_O)

where 7 is a scalar, but not necessarily a constant, which can be chosen in
different ways [one example is given by (21)], R; = E{x;x'} is the covariance
matrix of the interference plus noise x; and wq is a vector which depends on
the DOA, Doppler frequency and/or range to investigate, often an adjusted
version of the steering vector v (8, fq,7).

The filter (9) - (10) is optimal under several criteria, namely Maximum Like-
lihood, Maximum SNR (or SINR) and Linearly constrained minimum noise
power for some usual assumptions [72].

The filter (9) - (10) is commonly called “adaptive beamforming” for space-only
snapshots (see Section 3.3.2) and STAP (Space Time Adaptive Processing) for
space-time snapshots (see Section 3.3.3). We call (9) - (10) with known covari-
ance matrix the optimal filter and we say optimal beamforming and optimal
STAP.

The same filter structure is employed for suppression of direct path jamming,
clutter and TSI but with different choices of which radar signal dimensions
(space, slow-time and fast-time) to include in the filter. For example, for
suppression of direct path jamming, usually the filter (9) - (10) with space-
only signals is suggested [73, 74].

An early form of surface clutter suppression in moving radar was to try total
cancellation of the clutter signal with no thought of the target signal [75].
This objective led to DPCA (Displaced Phase Center Antenna) [69, 70, 75,
76, 77). DPCA is a special case of the interference suppression filter (9) -
(10) but it can only be used for suppression of clutter, not other interference.
Another objective is maximizing the Signal to Interference plus Noise Ratio
(SINR) [69, 70]. This led to Space-Time Adaptive Processing (STAP) (fully
adaptive, reduced dimension and reduced rank [69, 78]|), which resulted in
the filter (9) - (10) with the scalar n an constant. Finally, by maximizing
detection probability while holding a constant probability of false detection
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[79, 80], CFAR (Constant False Alarm Ratio) detection filters like Kelly’s [81]
and AMF (Adaptive Matched Filter) [82] were the result. These are also the
filter (9) - (10) but with the scalar n not constant and chosen in certain ways.

Normally R; is unknown and must be estimated. A common estimate is [70, 83]

|

L

- 1

Ri = ZXQX{?, (11)
=1

where x;, is a received interference plus noise snapshot. The number of training
snapshots is L. The estimation of R; is the main problem for STAP in radar.
The reason for this is that the, usually many, elements in the received radar
signal vector x require many training snapshots x;, of good quality for a good
estimate of R; and the number of good training snapshots usually is very
limited. We call (9) - (10) with estimated covariance matrix the adaptive filter
and we say adaptive beamforming and adaptive STAP.

For effective interference suppression the DoFs of the filter (9) - (10) must be
larger than the interference (signal) rank and the number of training snapshots
for estimation of R; must be sufficiently large compared to the rank and the
DoF. For this reason the rank must be known or estimated. This is in principle
the same problem as estimation of the number signal sources in DOA estimation
(Section 3.4).

The target detection is performed by comparing the output y of filter (9) - (10)
with a threshold. If y is larger than the threshold, the detection of a supposed
target is declared. Before the supposed target is regarded as a confirmed target,
usually several supposed target detections are required.

3.3.2 Direct path jamming

Direct path jamming is performed via the line-of-sight radio wave from a jam-
mer to the radar. It is concentrated to a single DOA, the same DOA for all
radar pulses (PRIs) and range bins of the radar. The jammer waveform can be
either random noise or a deterministic waveform. The objective of the jammer
is either to drown the radar with disturbance so that the target detection and
parameter estimation fails, or to deceive the radar regarding the target pa-
rameters, e.g. the target position and velocity. For suppression of direct path
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jamming, usually space-only adaptive filtering is used, i.e. adaptive beam-
forming. The signal model of the received signal from of K point sources in
space-only, which is a special case of (3), is

K
Xspr — Zakprv(okpr)a (12)
k=1

where p is the index for radar pulse/slow-time, r is the index for range bin/fast-
time, oy, is an either deterministic or random scalar and v(0y,,) = a(0y,,)
is the spatial steering vector for the k*" point source, the p** radar pulse and
the 7" range bin. Both the target signal x; and the jammer signal x; use this
model, with different choices of akpy, Orpr and K. The subscript “s” of x;,,
in (12) can be replaced by the subscripts “t” and “j” to give the signal models
for the target and the jammer, respectively.

3.3.3 Clutter

Clutter are undesired reflected signals from the radar transmission, as men-
tioned in Section 2.1. Clutter is also called cold clutter to distinguish it from
hot clutter (Section 3.3.4). The clutter we are concerned with are reflections on
the ground or sea, i.e. the earth’s surface. When the target is moving and the
radar is not, there is the possibility to distinguish the target from the ground by
different Doppler frequencies, hence by Doppler filtering, which is a 1D filter-
ing. However, if the radar is also moving, this is not sufficient, since the radar
movement and the sidelobes and backlobes of the radar antenna can generate
clutter signals within a wide Doppler region. There is a relation between the
DOA and the Doppler frequency of the clutter:

2
fa= % cos . (13)

See Figure 18 for v, and o and compare with (2). In the DOA-Doppler di-
mensions, the clutter will be confined to narrow ridges, see Figure 19 for an
example. This figure shows that space-only processing, i.e. adaptive beamform-
ing, would suppress both the clutter and the target since the target appears
in the clutter main beam. It also shows that a weak target will be hidden by
Doppler sidelobes. Therefore slow-time-only processing, i.e. Doppler filtering,
or space-only processing, i.e. beamforming, would be ineffective. However, it
can be seen that if the filtering (9) - (10) can be conducted simultaneously in
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the space and slow-time dimensions, the target is free from clutter. This is an
effective way to suppress clutter in moving radar. It can be noted that direct
path jamming can also be suppressed with the same filter.

For the clutter suppression problem the following signal model is appropriate.
The signal model of a received space (antenna channels) and slow-time (radar
pulses) signal x; , from K point sources for a single range bin r, is

K
Xs, = Z akrv(okm fdkr)7 (14)
k=1

where Oy, is the DOA, f4;,, is the Doppler frequency and ay, is the amplitude
of the k™ point source at the 7" range bin. Both the target signal x; and the
clutter signal x. use this model, with different choices of agy, Oy, fap-and K.
The subscript “s” of x5, in (14) can be replaced by the subscripts “t” and “c¢”
to give the signal models for the target and the clutter, respectively. The space
slow-time steering vector is v(0, fq) = b(f4) ® a(@). The model (14) is also a
special case of the general model (3).

There exist very much research literature about STAP for suppression of clut-
ter. Introductions to the subject are given by [69, 70, 72, 85, 86].

3.3.4 Terrain scattered interference

In Section (2.1) it was mentioned about TSI, also called terrain scattered jam-
ming or hot clutter. TSI is the disturbing signals from a jammer which are
arriving at a radar after being reflected on the ground or sea. The reflected
waves which are impinging on the radar receiver antenna have different DOAs
and different time-delays of the jammer waveform. See Figure 20 for an illus-
tration of this and Figure 21 for measured TSI signals with the FOI DigAnt
antenna (Figure 13). The relation between the space and fast-time dimensions
makes it natural to try suppression of the TSI in these dimensions.

The signal model for point sources in space and fast-time, a special case of (3),
is

K,

Xs, = Z akpv(ekp, fkp). (15)
k=1
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Clutter cell

Figure 18: Geometry of airborne radar and surface clutter. The angle « is the angle
between the radar platform velocity vector v, and the direction to a ground patch. The

platform velocity is v, = |v,|. Modified figure from [84].
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Figure 19: DOA Doppler clutter spectrum with clutter ridge for side-looking, i.e. antenna
line parallel to the radar platform velocity vector, ULA. A target is present. The DOA
« is defined in Figure 18. The normalized Doppler frequency is fr = 2fq/ frrr, where
ferre is the PRF. The platform velocity is v, = |v,| (Figure 18). Modified figure from

[84].
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LTI RQC‘Q.F

Figure 20: Illustration of TSI. The (red) cracked and bent lines from jammer to radar are
the TSI. The (red) single-arrow line from jammer to radar is direct path jamming and the
(blue) line with a double arrow between the target and the radar is the target signal.

The space fast-time steering vector is v(Okp, 7xp) = c(7) @ b(fq). Both the
target signal x; and the TSI signal xs; use this model, with different choices of
Okp, Okp, Trpand K, when suppressing the TSI in the space-fast-time dimen-
sions. The subscript “s” of x;, in (15) can be replaced by the subscripts “t”
and “tsi” to give the signal models for the target and the TSI, respectively.

There is very little written about TSI in the open literature.

3.4 High resolution direction of arrival estimation

We now turn to a different problem than target detection and interference
suppression, namely estimation of the direction to, or DOA (Direction Of Ar-
rival) of, the target. We will call it High Resolution DOA Estimation (HRDE)
because the methods can achieve a higher resolution than (conventional) beam-
forming (Section 2.4.1). HRDE especially for radar has been treated in [33].

The signal model for K, point sources is the same as (12) for direct path
jamming. We change the term p (index for the radar pulse) to ¢ (time index),
omit the index r for the range, skip the subscript “s” and include the receiver
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Figure 21: Measured TSI, i.e. bistatic ground reflections in a time-difference—direction
coordinate system. Horizontal axis is DOA in degrees. Vertical axis is the time-difference
between the direct path signal and the TSI, expressed as number of range bins of the radar.
The airborne transmitter was located at a distance of 50-60 km and at an altitude of
4000 m. The receiver was the FOI DigAnt (Figure 13). The diagonal stripe of reflections
are created by the transmitter main beam. Image originally by Per Grahn in [87]; then
annotated by Svante Bjérklund.

noise in the model. Then the used model of the received antenna signals for
the r*" range bin is the common one in the DOA estimation literature:

K
x(t) = Z ar(t)a(0r) + n(t) = A(0)s(t) + n(¢) (16)

k=1
where A(0) = [a(6y),...,a(0k,)] is called the steering matriz, s(t) =
[a1(t),...,ak,(t)]T are the source signals and n(t) = [ny(t),...,ny(t)] is the

receiver noise. The number of antenna channels is N. This signal model is
thus a special case of the general model (3) [and (8) including the noise| for
space-only signals with x. =0, x; = 0, Xt = 0.

DOA estimation methods can be divided into two different types: spectral
methods and parametric methods. Spectral DOA estimation methods primar-
ily deliver a real and scalar valued function P(0), a DOA spectrum, of one or
two variables, which are the angles which define the DOA 6. This spectrum
should have peaks at the DOAs of the sources and is often plotted, see for
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example Figure 12 and 16-17 in Publication 1 and Figure 10a in Publication 4
(included later in this thesis). The DOAs are then found by an 1D or 2D
search for the peaks. The most well-known spectral method is MUSIC' (MUI-
tiple SIgnal Classification)[88, 89]. Figure 15-17 in Publication 1 and Figure 5
in Publication 2 use MUSIC. Parametric DOA estimation methods directly
deliver the estimated DOAs and other parameters of the sources as a finite
number of parameters. These parameters are often found by a multidimen-
sional optimization. Examples of parametric methods are maximum likelihood
methods and WSF (Weighted Subspace Fitting) [89]. All parametric methods
and most spectral methods utilize a parametrized signal model. For this the
number of signal sources need to be known. Estimation of the number of sig-
nal sources is an important research problem, e.g. see [33, 89]. In principle
this is the same problem as estimating the interference (signal) rank in radar
interference suppression (see Section 3.3.1).

Here we show one spectral DOA estimation method which is called Capon’s
beamformer [89, 90]. It is of special interest to us because it is related to the
interference suppression filter (9) - (10) and it is also used in several of the
publications included in this thesis. As with (9) a FIR filter is used to obtain
a filter output signal

y(t) = wix(t), (17)

where w = w(0) is the filter vector for a look direction 6. Assuming that the
source signals s(t) are stochastic, the DOA spectrum is

P(6) = P(w(8)) = P(w) = E{ly(1)"} = w"Rw, (18)

where R = E{x(t)x* ()} is the covariance matrix of the received signals. The
Capon beamformer solves the optimization problem

Weap = arg miny, P(w) (19)
subject to wia(9) =1
The solution is

~ R7a(g)
Y R a0
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Note, this is the interference suppression filter (9) - (10) with Wopt = Weap,
R; =R, wy =a(0) and

1
T AT OR Ta6) 1)
The DOA spectrum is now
Peap(8) = Peap(w(8)) = E{|y(t)|"} = : (22)

af(9)R *a(9)

The DOAs are found by searching Pe,,(6) for maxima.

The DOA spectrum of Capon is also an estimation of the power impinging
on the antenna. Other spectral methods, such as MUSIC, delivers a pseudo-
spectrum, which do not estimate the power. Several of the publications in-
cluded in this thesis employ the Capon method: for DOA estimation in Fig-
ure 4 in Publication 2; for estimation of the impinging power in Figure 7 -
12 in Publication 5, Figure 3 in Publication 6 and Figure 2, 7, 8a - 14a in
Publication 4 and also Figure 21 in this thesis.

Most DOA estimation methods, like the Capon method in (22), utilize the
received antenna signals x(¢) in the form of their covariance matrix R. These
methods assume that R is known but in reality it is unknown. Traditionally
R has been estimated by the SCM (Sample Covariance Matriz):

L
N 1 H

where x; is a received training signal snapshot. The number of snapshots is
L. This is the same estimation method as for the estimate (11) of the inter-
ference covariance matrix R; in interference suppression and target detection
in Section 3.3.1. This estimate of R is good if the number of snapshots L is
large (L — o0). However, there is often a shortage of training snapshots in
radar, especially if high resolution estimation is performed simultaneously in
more than one of the dimensions in the radar data cube (see below). This is
the same problem as for interference suppression (Section 3.3.1).

An alternative approach for coping with a limited number of training snapshots
is to derive methods which are good if the number of snapshots L and the
number of sensors N are both of the same order of magnitude and both are
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large (L, N — oo such that (L/N) — ¢ > 0 in [91, 92, 93]). The idea is
that the estimation performance then should be good also for few snapshots,
in the order of the number of sensors [91, 93]. Using this approach, in [93]
an improved DOA estimator for random source signals and in [91] a DOA
estimator for unknown deterministic source signals were derived.

The same techniques as for high resolution DOA estimation can be used for
the other dimensions of the radar data cube (Figure 7), namely Doppler and
range, and even for two or all three of the dimensions DOA, Doppler and range
at the same time. Figure 7- 12 in Publication 5 and Figure 3 in Publication 6
show Capon spectra in the DOA-Doppler dimensions.






37

4 Radar with micro-Doppler measurements

We will now turn to the other research area of this thesis, namely radar with
micro-Doppler measurements.

4.1 Introduction

In safety, security and military applications there is a need at short distances
(up to a few hundred meters) to detect targets, such as humans, animals, cars,
boats, small aircraft and consumer drones; further to classify the target type
and activity; to distinguish between target individuals; and also to foresee tar-
get intent in order to obtain situational awareness now and anticipate what will
happen in the future. See Figure 22 for examples of some radar targets. Safety
applications can be, for example, situation consciousness and search & rescue
at catastrophes or patient and elderly monitoring in health and welfare. Secu-
rity applications can be surveillance of protected zones around, e.g., airports,
power plants and political summits, or law enforcement operations. Military
applications can be situation awareness in combat situations and surveillance
around checkpoints and camps. Figure 23 illustrates a security scenario.

Radar measuring micro-Doppler could be employed to perform the above tasks.

Figure 22: Examples of targets for a micro—Doppler radar for security surveillance. Top
right: a consumer drone, a quadrocopter. These targets were used in Publication 9
(reference [11]). Photo by FOI.
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Figure 23: An illustration of a micro-Doppler radar scenario for security surveillance.
Illustration by Henrik Pettersson.

Micro-Doppler is created by the movement of internal parts of the target, such
as arms and legs of humans and animals, wheels of cars and rotors of drones.
See Figure 24 for an example of a micro-Doppler signature of a walking human.
It is possible to discern the trajectories of different body parts as the figure
indicates. Figure 25, 26 and 27 show some radars which have been used for
micro-Doppler measurements by FOI.

4.2 Research on micro-Doppler in radar

Research on micro-Doppler in radar is a relatively new research area. Classi-
fication of human activities has been conducted in [94, 95, 96] and separation
of humans and vehicles in [97, 98]. Birds and different kinds of consumer
drones are classified in [99, 100]. Only a few research results on automatic
separation of humans from animals has been reported [11, 101, 102]. Only
a few books, dedicated entirely to radar micro-Doppler, have been published
[103, 104]. The literature about micro-Doppler is not at all so extensive as the
literature about signal processing for array antennas. One reason is that the
radar micro-Doppler field of research is much younger.
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Figure 24: Micro-Doppler signature of a walking human. Image from [17]. Reproduced
with permission from DGON (German Institute of Navigation).

The Swedish Defence Research Agency (FOI) has earlier analyzed micro-Doppler
of humans at mm-wave (77 GHz) [17] and of vehicles (wheeled and tracked) at X
and Ku band [105]; performed detailed electromagnetic simulations of micro-
Doppler of humans and animals [106]; classified different human gaits using
micro-Doppler at Ku band (15 GHz) 23] and mm-wave (77GHz) [10, 16]; clas-
sified humans, animals and man-made objects [11]; simultaneously estimated
and tracked micro-Doppler and position parameters [18]; and done work on
distinguishing human individuals using micro-Doppler signatures [107]. FOI
has also worked on detection of humans around corners and behind walls
[108, 109, 110]. The work on micro-Doppler which is covered by this thesis
is described in Section 5.

4.3 Signal processing for micro-Doppler radar
4.3.1 Structure of transmitted and received signals

Transmitted signal Two kinds of transmitted signals are common in micro-
Doppler radar:
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Figure 25: The FOI Arken radar [111]. The left antenna is used for transmission and the
right for reception. The middle antenna is used for special purposes. The radar is pulsed
and can operate in 6-18 GHz for both horizontal and vertical polarization. This radar is
used in [23, 105]. Photo by FOI.

Figure 26: The Saab SIRS 77 radar. It is a single-channel pulsed FMCW (Frequency
Modulated Continuous Wave) radar operating at 77 GHz with horizontal polarization. It
has a resolution in range of 1 m and in azimuth of 1°. The radar antenna, RF electronics
and a turn table are mounted on top of the tripod. This radar was used in Publication 8
(reference [10]) and in [12, 16, 18, 112, 113]. Photographer: Svante Bjérklund. Photo
from [17]. Reproduced with permission from DGON (German Institute of Navigation).
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Figure 27: Left: The IMST radar and a radar target. In the micro-Doppler mode the
radar is a pure-carrier radar with frequency 24 GHz and vertical polarization. The radar
antenna and RF electronics, which are manufactured by the German company IMST, are
mounted on top of the tripod. The box on the ground contains the control computer.
Photo by Karl-Géran Stenborg. Modified by Svante Bjorklund. Right: Close-up of the
IMST radar antenna and RF electronics module. Photo by Svante Bjorklund. This radar
is used in Publication 9 (reference [11]).

e Pulsed signal. The pulse modulation can either occupy a part of the PRI
or fill the whole PRI. The latter case, which has no gap between the
pulse modulations, is a CW (Continuous Wave) signal. A common pulse
modulation is linear FM (Frequency Modulation). An FMCW signal is
thus a repeated, i.e. pulsed, frequency modulation without gaps. There-
fore a FMCW signal is also a pulsed signal. With a pulsed transmitted
signal it is possible to measure the range to the target. The bandwidth of
the signal determines the range resolution, with higher bandwidth giving
better resolution.

e Pure carrier. This is a sinusoid without modulation. This signal is also a
CW signal. With this transmitted signal it is possible to measure Doppler
and micro-Doppler but not target range (distance).

Received signal We will mention three important aspects of the received
signal, namely observation interval, sampling frequency and structure of the
received signal.
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The observation interval is the time interval in which the radar is staring at the
target and is collecting data. In order to discern the movements of the internal
parts of the target, the observation interval should cover some cycles of these
movements, e.g. leg movements of humans and animals or wheel rotations of
a car. Thus, the suitable observation interval depends on the target type. A
suitable observation interval for a walking or running human target is 2-3 s.

The sampling frequency of the received signal must be sufficiently high to mea-
sure the highest velocity unambiguously. It is well-known that an analog signal
must be sampled sufficiently fast relative the bandwidth of the signal in order
to avoid aliasing. The highest target velocity depends on the target type,
e.g. about 10 m/s for a human walking or running. The required sampling
frequency also depends on the carrier frequency, or alternatively the carrier
wavelength, according to (2). For example, the walking or running human
requires a sampling frequency fs; > 3.2 kHz at a carrier frequency of 24 GHz.

The structure of the received signal is somewhat different for the two kinds of
transmitted signals above:

e Pulsed signal. For the pulsed transmitted signal the received signal can be
organized in a radar data cube (Section 2.4.1 and Figure 7). For this case
the Doppler shift is measured by the phase shift between pulses. Thus,
the Doppler filtering is performed in the pulse/slow-time dimension, as
in Section 2.4.2. The sampling frequency is equal to the PRF. The range
to the target can also be measured.

e Pure carrier. There is only a single time dimension. It can be interpreted
as the pulse/slow-time dimension. The PRI only contains a single range
bin. By this choice the radar signal from all ranges will be folded into this
single range bin. The result is that objects and targets from all ranges
will be visible, if they give a sufficiently strong reflected radar signal.
The sampling frequency is also now equal to the PRF and the Doppler
filtering is performed also now in the “pulse/slow-time” dimension.

4.3.2 Processing of the received signals

The processing of the received radar signal in a micro-Doppler radar can be
divided into the steps in Figure 28. In the block Radar receiver the signal
is down-converted to base-band and analog-to-digital-converted. The digital
processing starts with beamforming, if the antenna is a digital array antenna,
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and pulse compression in order to localize a target in DOA and range. This is
performed in the block Beamform. Pulse comp. Then the signal passes the
velocity compensation (the block Velocity comp.), this the first time without
any compensation. Since the radar is supposed to be stationary, clutter sup-
pression in the Doppler domain now follows in the block Clutter filter. After
that, if an object is detected by its signal strength in the block Detect, its
position and (radial) base velocity will be estimated by the block Estimate
pos & vel. The (radial) base velocity is the (radial) velocity of the main body
of the target. This velocity is measured with normal Doppler filtering. The
position and velocity information is fed back to the velocity compensation in
order to counteract against the object migrating between range bins during the
observation interval, and possibly set the base velocity to zero. The received
signal is once again put through the velocity compensation, this time with ac-
tive compensation, and the clutter filter and then directed to the Select block.
This block cuts out the correct part of the received signal for classification
analysis. The block Transform possibly transforms to a new signal domain
which is better suited for the following feature extraction. A common trans-
form is to convert to the combined time and velocity domain by a short-time
Fourier transform. This transform uses an integration interval for each (short)
Fourier transform. The integration time should be long in order to give high
velocity resolution but it should also be short so that the internal target parts
do not change velocity during the interval. (This is dependent on target type).
Therefore the integration interval is a compromise.

The micro-Doppler classification problem can be decomposed in the two stages
feature extraction (blocks Transform and Feature extract) and classification
(block Classify). In Figure 8 the transform is included in the “Features” block.
There is a large variation in the proposed approaches in the literature for
both of these stages, especially for the feature extraction. The choice of fea-
ture extraction is partly directed by the radar type, the environment and the
type of radar targets. Some feature extraction methods first transforms to the
combined time and velocity domain [94, 95, 96, 98, 114], which is possible to in-
terpret manually, while others extract their features directly from the received
radar signal [97, 115, 116, 117], often inspired by speech signal processing. The
classification consists of two sub-stages, first building (training) a model of dif-
ferent classes from training data, and second a decision rule for comparing the
model with the data to classify. Two common classifiers are SVM (Support
Vector Machine) [118] and k-Nearest Neighbor [119].
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Figure 28: Block diagram of signal processing in a micro-Doppler radar for security
surveillance in real operation. See the text in Section 4.3.2 for an explanation of the

blocks. Compare with Figure 8.

What we have described is the processing in a real operation. The needs for
the processing in research and development are different. In this latter case,
tools for storing and managing measured and simulated data, tools for selecting
and annotating data, tools for training classifiers and tools for analysis are also

needed.
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5 Contributions of the included publications

This chapter summarizes the contributions of the selected and included publi-
cations in this thesis. The contributions are also listed in Section “Publication
list” at the beginning of the thesis.

Publication 1: Radar-Like Measurements with an Experimental
Digital Beamforming Array Antenna, 1998 [3]

This publication addresses High Resolution DOA Estimation (HRDE) in radar.
“When required, HRDE in radar could be applied as a special radar function for
the resolution of target groups, estimation of jammer DOAs, detection & es-
timation in jamming environments, handling of multipath etc.” [3]. HRDE
could also be used to resolve target scattering points as an aid for target
recognition/classification. The main results of this publication are two: 1)
demonstration of incorporating HRDE into a radar system and 2) the design
of “radar-like” measurements, which means using emulated radar targets via
measurements of direct path signals from transmitter(s) to receiver in an ane-
choic chamber. The advantage of these measurements is the good control of the
influencing factors. The measurement design and the radar DOA estimation
are verified by real measurements in this publication.

The work was later continued in [28] in which radar and HRDE are combined
in monostatic measurements outdoors and in [63] in bistatic measurements
outdoors. The report [87] contains more results on the combination of radar and
HRDE using outdoor measurements. The report [120] investigates, with the
aid of simulations, how to incorporate HRDE in a radar application example.

Publication 2: High Resolution Direction of Arrival Estimation
Methods Applied to Measurements from a Digital Array Antenna,
2000 [4]

High resolution DOA estimation can be useful for several applications, includ-
ing radar applications, to give new functions and improve the performance.
This publication shows a test of DOA estimation methods on measured data,
and also compares ten DOA estimation methods, both spectral ones and para-
metric ones, on the data. The conclusions of the work are: 1) High-resolution
methods work on measured data. At ideal conditions the resolution can be
improved considerable compared to conventional beamforming. 2) Some con-
clusions about properties of some specific DOA estimation methods are given.
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Complementary work to Publication 1 and 2 was published in [63], where the
influence of calibration and broadband signals on HRDE is investigated.

Publication 3: Auxiliary Beam Terrain-Scattered Interference
Suppression: Reflection System and Radar Performance, 2013 [5]

Terrain-scattered interference (TSI), i.e. jammer signals reflected on the sur-
face of the earth, can deny military radar the detection and localization of
targets. The TSI must therefore be suppressed. TSI signals are usually more
difficult for the radar to handle than direct-path jamming. This publication
presents results on the structure of auxiliary beam TSI suppression (one of
several possible TSI suppression methods), on the estimation of the reflection
system (which describes the scattering on the earth surface) and on the quality
of the estimate. Further, it derives theoretical expressions for the signal-to-
interference plus noise ratio (SINR) and the remaining TSI power for a single
auxiliary beam. Since the SINR is directly connected to the radar perfor-
mance, these expressions show what factors affect the performance and how.
A precursor of this publication was the conference paper [25].

Publication 4: Measurement of Rank and Other Properties of
Direct and Scattered Signals, 2016 [6]

The interference in radar must be suppressed in order for the radar to detect
and localize the targets. The interference can be clutter, direct path jamming
or TSI (terrain scattered interference/jamming). The interference rank is im-
portant to know. The rank determines the required size of the suppression
filter and also the number data needed to estimate the interference properties
which are used in the filter.

The results of this publication are two: 1) Design of a low-cost experiment
with good control of influencing factors for measuring rank and other proper-
ties of direct and scattered electromagnetic signals. This design, which takes
several important aspects into account, can be an aid for designing future ex-
periments and measurements. 2) Signal rank and other properties of direct
and scattered signals. A verification of these measured properties is carried
out with properties described in the literature, there acquired from theory and
simulations.

The measurements in this publication are performed in an anechoic chamber
with transmitters, a receiving digital array antenna [60] and a moving reflec-
tor. A first experimental design was used in [29] and then improved in [27].
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Publication 4 contains more details and a significantly deeper analysis than
[27].

Publication 5: Clutter Properties for STAP with Smooth and
Faceted Cylindrical Conformal Antennas, 2010 [7]

The application in mind in this publication is an airborne radar used to de-
tect and localize slowly moving targets in a ground clutter environment. In
order to achieve this, the clutter must be suppressed. The investigated prob-
lem in the publication is how to choose the geometry and the subarrays of
the radar antenna in order to suppress the clutter effectively, or more specif-
ically, investigation of how severe the clutter is for some antenna geometries
and some subarray designs. The employed geometries are three: 1) a faceted
and 2) a smoothly bent vertical half cylinder, pointing forward, and 3) a planar
forward-looking aperture. See Figure 15 and 16 in this thesis for similar an-
tennas. The two half-cylinder antennas are conformal because their apertures
are bent and adapted to the outer surface of the radar platform. Advantages
with conformal antennas are reduced space and weight, larger field of view and
aerodynamic design. The employed subarray designs consist of subarrays of
different sizes. The results are created by simulations. Conclusions of the pub-
lication are: “the faceted and smooth half-cylinder antennas have no significant
differences in clutter suppression performance. The plane antenna has poorer
performance. The subarray division is more important than the antenna ge-
ometry. The number of antenna channels is related to the clutter rank and
the clutter fraction of the signal space” [7]. Also, some new analysis tools are
proposed.

Figure 1 and 2 and part of the introduction of Publication 5 were also published
in the IEEE Aerospace and Electronic Systems Magazine [19].

Publication 6: Clutter Properties for a Side-Looking Radar with
Planar Regular and Irregular Subarrays, 2015 [8]

Publication 6 is similar to Publication 5 but it uses side-looking antennas in-
stead of forward-looking. Further, it employs a different antenna geometry
and uses different subarray designs. Only a single antenna geometry is used,
namely a (side-looking) planar aperture. Four different subarray designs are
investigated. A conclusion is that irregular subarrays and large subarrays are
advantageous according to different performance measures. Another conclu-
sion is that none of the subarray designs is the best for all used performance
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measures in the studied case. It is also noted that “the properties of the clutter
received by a radar depend on the radar design” [8].

Publication 7: Three-Dimensional DPCA with Rotating Antenna
for Clutter Cancellation, 2015 [9]

For a radar on a moving platform the clutter from the earth’s surface must be
suppressed in order to detect and localize targets. In this publication an ex-
tension of the well-known clutter cancellation method DPCA (Displaced Phase
Center Antenna) to other antenna element positions than on a line parallel with
the velocity vector of the radar platform is made. Together with the previous
paper [14], a new mathematical condition for total cancellation of the clutter
is derived, a condition that do not require that all antenna element positions
are on a single line parallel with the velocity vector. The antenna can even be
rotating. Further, an optimization problem is formulated for maximizing the
target signal with the clutter cancellation as a constraint. An extra discussion
about the new clutter cancellation method, the target signal, the relation to
the traditional DPCA and about model errors is found in paper [14].

Publication 8: Features for Micro-Doppler Based Activity
Classification, 2015 [10]

There is an increasing need in safety, security and military surveillance at short
distances to detect targets; to classify the target type and target activity; to
distinguish between target individuals; and also to foresee target intention. An
approach is to employ radars measuring micro-Doppler to perform these tasks.

Together with [23] and [16] this publication suggests a new feature extraction
method, in which the components with most energy in the Cadence Velocity
Diagram (CVD) are utilized in the feature vector, which then is used in a clas-
sifier. The CVD is created by the Fourier transform along the time dimension
in the Time Velocity Diagram (TVD). This publication also in practice applies
a feature extraction method from the literature, a method that delivers phys-
ical features, such as target base velocity, cycle frequency (limb frequency for
humans and animals) and Doppler bandwidth [94]. This publication uses mea-
surements on moving humans conducted with a 77 GHz radar (see Figure (26))
which were made by FOI together with Saab AB. Micro-Doppler signatures of
moving humans using this radar are shown in [17]. Further, this publication
classifies the gait of a moving human with good results. Since no significant
difference in classification result between the two feature extraction methods is
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found, the publication suggests and also demonstrates that only two properties,
namely the base velocity and the cycle frequency, are sufficient to distinguish
between the activities at hand. These two properties are explicitly or implicitly
present in the feature vectors of the two methods.

Publication 9: Target Classification in Perimeter Protection with a
Micro-Doppler Radar, 2016 [11]

In security surveillance at the perimeter of vital infrastructure, such as airports
and power plants, it is important to detect and classify approaching objects.
Especially important is to distinguish between humans, animals and vehicles.
It is also desirable that the sensor equipment is sufficiently cost-effective to
facilitate a large area deployment.

This publication uses measurements from a low-complexity and cost-effective
24 GHz radar (see Figure 27) on moving humans, a moving dog, a moving horse
and various man-made objects. The measurements were conducted by FOI. In
principle, the same physical feature extraction method as in Publication 8 is
used in this publication. The classification result of separating humans, animals
and man-made objects is good. Especially interesting is the good ability to
separate humans and the animals at hand. The publication also shows that it
is possible to choose to have limitations in the radar, and thereby make the
surveillance system more affordable, and still solve the classification task.

This publication also demonstrates together with Publication 8 and [23] the
ability to use different kinds of radars for micro-Doppler measurements and
classifications. In these three documents, three different radars of different
types and frequency bands have been used.

The main conclusion from Publication 8 and 9 about micro-Doppler radar
is that this type of radar should be feasible for safety, security and military
surveillance applications.

Publication 10: On Distinguishing between Human Individuals in
Micro-Doppler Signatures, 2013 [12]

This publication also concerns security applications, as with Publication 8 and
9. The research problem is now to distinguishing between human individuals
from micro-Doppler signatures (MDS). “By distinguishing between human in-
dividuals we mean to recognize the same individual in a short time frame but
not to establish the identity of the individual” [12]. This ability could be used
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to improve multiple target tracking, which in its turn could enhance the clas-
sification of target type and activity and perhaps also make it easier to predict
the intent of the target.

This publication is investigating whether there is information in MDSs to dis-
tinguishing between human individuals. If there is, this information could be
utilized by a machine to perform the task. The investigation was conducted
by letting six test persons put MDSs, measured by an 77 GHz radar by FOI
together with Saab AB (see Figure 26), from three humans into three groups.
The idea was that if the test persons separated the individuals better than
random, there should be information about the individuals in the MDSs. A
statistical hypothesis test concludes that the test persons did this better than
random. The conclusion of the publication is that “micro-Doppler signatures
of walking humans likely contain information to distinguish between different
human individuals” [12]. The publication also discusses features in the MDSs
which could be used for this.

This research methodology to use test persons to see if information is present
which also could be utilized by a machine is unusual in electrical engineering
and signal processing.
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Abstract

An experimental S-band digital beamforming receiving array antenna has been used in “radar-
like” measurements, where radar signals with programmable waveforms are transmitted. The
measurements are carried out in an anechoic chamber and the measured signals come from the
direct path from transmitter antennas to the receiver antenna. In this way targets are simulated.
On the received signals, conventional beamforming, pulse compression, doppler filtering and
high resolution direction of arrival estimation are performed. Accurate channel calibration and
channel equalization are utilized. This paper first describes the receiving antenna, transmitter
control, measurement arrangements, calibration and signal processing. It then presents some
measurement results for high resolution direction of arrival estimation and for radar resolution of
one and two targets.

1. Introduction

At FOA (Defence Research Establishment of Sweden), an experimental S-band digital beam-
forming receiving array antenna has been designed and built. By a digital beamforming array
antenna (or digital array antenna) we here mean a receiving array antenna where the signals
from all the antenna elements are individually digitized and the beamforming is done digitally. In
radar, this gives flexibility and new possibilities regarding beam steering, beam shape, multibeam
capability, radar energy utilization, jammer and clutter suppression, multidimensional signal pro-
cessing such as STAP (Space Time Adaptive Processing), model based signal processing (e.qg.
high resolution direction of arrival estimation), multifunction capability, adaptivity etc. In the
future, radar systems with digital array antennas will be of increasing importance to counter the
electronic warfare environment.

In our present project, we have used the antenna in “radar-like” measurements, where we trans-
mit a radar signal with a desired PRF (Pulse Repetition Frequency) and waveform. The measure-
ments are, so far, carried out in an anechoic chamber and the measured signals come from the
direct path from transmitter antennas to receiver antenna. In this way targets are simulated and
hence the term “radar-like”. On the received signal, conventional processing (e.g. conventional
beamforming, pulse compression, doppler filtering) and model based signal processing for direc-
tion of arrival (DOA) estimation are performed.

The purpose of this work at FOA is to gain knowledge and experience of signal processing with
digital array antennas and of the use of digital array antennas in radar.



2. The experimental radar system

The experimental receiving antenna

The experimental receiving antenna consists of a horizontal linear array of 12 antenna element
subarrays, a calibration network by which a calibration signal can be injected into all channels,
and for each of the 12 channels a receiver module, an A/D converter and a buffer memory (figure
1 and 2). A larger number of antenna elements and channels would be desirable. The use of only
12 channels is a matter of cost but still it is possible to draw valuable conclusions.

The antenna elements are stripline dipoles, arranged in the horizontal linear array as vertical lin-
ear subarrays with 4 dipoles each. The antenna has an agile frequency band of 2.8-3.3 GHz and
an instantaneous bandwidth of 5 MHz. The A/D-conversion is done at IF frequency and the final
down conversion is done digitally. The experimental antenna itself has been discussed earlier,
e.g.in[1].

From the buffer memories the signals are transferred to an ordinary computer (“Control com-
puter” in figure 2) where the digital signal processing is done in non-real time.
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Figure 1: Photo of the receiving antenna in Figure 2: Physical block diagram of the
the anechoic chamber. experimental radar system.

Transmitter and waveform control

The digital control unit (figure 2) controls the transmitter and the data acquisition. It generates a
programmable analog signal at the start of each radar pulse (figure 3b) that controls the wave-
form modulation (AM, phase modulation or FM) of the transmitter signal generator. Another pro-
grammable signal switches the carrier (RF) on and off (figure 3a). The PRF can be chosen and
effects both signals. A commercially available signal generator is used as the transmitter. As
transmitter antennas, some (1-3) horn antennas are used.

The digital control unit and the measurement system is described in more detail in reference [2].



Sampling, data acquisition, IQ-conversion and down conversion

At sampling, the signal is located at a IF frequency of 19.35 MHz, which is 3/4 of the sampling
frequency 25.8 MHz of the12-bit A/D-converters. The total data acquisition rate for all channels is
464.4 Mbyte/s. The fast buffer memories consists of 1 Mword (12 bit) for each of the 12 channels
and this allows for a maximum coherent data acquisition time of about 41 ms.

A prescribed number of data blocks with specified delay time K,,,,, before each block and spec-
ified time Kpg; between each block (figure 3c) can be collected. This facilitates the collection of
radar returns from only a selected portion of range bins (for one or several pulses).

The 1Q-conversion, filtering, down conversion and decimation is made in the frequency domain in
the ordinary computer. In a real radar, this could be done in the time domain in special hardware,
of which one example was given in [1].

The result is a complex base band signal vector x,,,, = A@®)e/*® with the sampling rate 6.45
MHz and with one vector element for each antenna channel.
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Figure 3: Carrier (RF) (a), waveform modu-
lation (b )and data acquisition (c) control.

Calibration of frequency dependence (equalizing)

For many DOA estimation methods it is important that the frequency response is the same in all
channels within the instantaneous bandwidth if high performance should be obtained. With nar-
row band signals, time delays are equal to phase shifts. Since the time delay to the antenna ele-
ments depends on the DOA of the signal source, a way to measure direction is to measure the
phase shifts in all elements and then match these phase shifts to a plane wave from a certain
direction. If the phases of the frequency responses of all the channels are not the same over the
instantaneous bandwidth, the phase differences between the channels will vary with frequency.
These phase differences will be interpreted as changes of the time delay to the antenna ele-
ments and therefore also as different directions (to the same signal source). In this case the
direction estimation will become problematical when trying to find plane waves and the perfor-
mance of the estimation will be degraded. Also amplitude differences will make the match to
plane waves less accurate.

Since each receiver module has relatively narrow band analog anti-aliasing and image rejection
filters, there will be differences between the antenna channels in the frequency response within
the instantaneous bandwidth. These differences can, however, be reduced by an equalizing filter



in each channel, whose coefficients are based on calibration data (figure 4). By using a 15 tap
FIR-filter, the differences can be almost completely eliminated (see [1]).
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Figure 4: Digital filtering and calibration chain. X,,,,,, X,,:> X.,,» and x are antenna

signal vectors at different places in the chain. Each vector has one vector element
for each antenna channel. a(8) are steering vectors. w(0) are coefficient vectors for
conventional beamforming. DDC means Digital Down Conversion. See also figure 6.

Calibration of direction dependence (coupling)

If, in the same way as with the frequency dependencies, the direction dependencies of the chan-
nels are not the same, the unwanted phase shifts and amplitude variations in the channels will
confuse DOA estimation methods and decrease the performance.

By illuminating the antenna with a known incident wave, the amplitude and phase errors of the
channels can be corrected. Due essentially to mutual coupling the antenna patterns of the
antenna elements differ from each other, in particular for the edge elements, and the array side-
lobes becomes higher than the nominal value. The mutual coupling can to a large extent be cor-
rected by using a decoupling matrix, C, calculated via a calibration procedure (see [1]). From the
calibration procedure, a table w,,,(6) with amplitude and phase corrections for a number of
angles 6 can also be obtained.

The correction of direction dependences can either be applied to the received signals

the beamforming weights w,,,. = C"w or the steering vectors a,,, (6) = C 'a(®),
where C” denotes the complex conjugate transpose (Hermitian transpose) of C. These meth-
ods will often not be identical, but often essentially equivalent. The steering vector a(6) is a
model of the directional properties of the antenna and is used in many high resolution DOA esti-
mation methods.

Xeorr = Cxout7

Radar signal processing

After IQ-conversion, down conversion, equalizing and perhaps coupling correction, the signal is
stored in a radar datacube with indices for pulse, time in pulse and antenna channel (figure 5 and
6). For the following radar signal processing, a MATLAB toolbox [3] developed at FOA is used.
Mainly methods for the estimation of the number of and the direction to signal sources are imple-
mented but there are also functions for pulse compression, doppler filtering, coupling correction,
signal simulation and visualization (figure 6).
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datacube before (left) and after (right) conven- Figure 6: Data flow in the radar signal process-
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figure 4 and 5.

In this paper, the term “conventional processing” means linear filtering in the form of conventional
beamforming (CBF), doppler filtering and pulse compression.

After conventional processing the indices of the radar datacube must be interpreted differently
than before. “Pulse” has become “Doppler”. “Time in pulse” has become “Range”. “Channel” has
become “Beam” or “Direction”. See figure 5.

Before or after conventional processing, high resolution estimation methods can be used to esti-
mate the number of targets and DOA of targets (see figure 6). For many high resolution methods
it is appropriate to correct for direction dependencies on the steering vector a(®) instead of on
the signals and to use the table w,,(®) instead of the decoupling matrix C:
a,,,(0) = diag(w,,,,(8)) ' a(6), where diag(w.,,,(8)) means making a diagonal matrix of the vector
w,.5(0) . In this way corrections can be applied for each test direction separately. This is often
more accurate than using the decoupling matrix C since we then rely on fewer assumptions.

Radar-like measurement arrangements

We have done measurements in an anechoic chamber at FOA. The measured signals came
from the direct path from transmitter antennas to receiver antenna (figure 7). The distance
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Figure 7: Arrangements for radar-like measurements.



between the transmitter and receiver antennas (6 m) is too short be considered a far field dis-
tance. However, the main part of this can be compensated for, either on the signals or on the
steering vectors, since the measurement geometry is known and the signal is measured in each
channel (figure 4). One signal generator was used as transmitter and one or two transmitter
antennas as targets. One of the signals was delayed 3.5 us (23 range bins) with an optical delay
line. In this way two target with different directions of arrival and ranges could be simulated. How-
ever, the Doppler frequency of both “targets” were the same.

So far, we have mainly studied direction estimation properties of our “radar” system. In our con-
tinued study we will additionally look more at range and Doppler estimation properties. We will
also use reflected target signals and bring the whole equipment outdoors and measure on differ-
ent targets and clutter sources.

3. Conventional processing of a single target

Waveforms of the type Linear Frequency Modulation (linear FM or Chirp) have mostly been used
in our measurements. The required bandwidth of the waveform modulation signal for phase mod-
ulation is unfortunately to large for our signal generator.

Before processing

Below is an example of the time properties of our system. A single target was present. The wave-
form modulation was Linear FM of length 64 time samples (range bins), corresponding to 9.9 us,
with a frequency deviation of 0.6 MHz and a PRF of 8.1 KHz. The signal to noise ratio (SNR) was
about 44 dB per antenna channel and per time sample. Figure 8 shows the mean value over all
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Figure 8: Example of normalized amplitude for = Figure 9: Example of mean value of estimated
linear FM as a function of time in pulse instantaneous frequency as a function of time
(range). SNR = 44 dB. in pulse (range). SNR = 44 dB.

128 pulses for the received amplitude as a function of time-in-pulse (range) after the previously
described equalizing but before any further radar signal processing. The performed equalization
makes the frequency responses the same in all channels but not equal to a constant. This is
enough for signal processing in direction but for signal processing in time it is desirable with a
constant frequency response. This constant frequency response should apply not only for the
receiver antenna but for the whole analog system from D/A- conversion of the waveform modula-
tion signal to A/D-conversion of the received signal. The absence of an equalization to a constant
for the system is probably the reason for the time dependence in figure 8. Figure 9 displays the
mean value over the 128 pulses of the instantaneous frequency as a function of time-in-pulse.



The standard deviation over the pulses of the instantaneous frequency was about 6 kHz. The
performance of our radar system is partly dependent on the used signal generator. We are actu-
ally not interested in the properties of this signal generator but nevertheless they influence our
measurement results.

After conventional processing

We have taken a measured waveform modulation from one antenna channel (containing its
present equalizing filter) and one pulse as the reference waveform, thus including the effects of
the whole analog system. This reference has been used for pulse compression of all channels
and pulses. With this procedure we have matched the received signal to the right matched filter
but we do not exactly get the properties of linear FM. Alternative procedures would be to equalize
the system to a constant as discussed above or to optimize the sent waveform modulation given
the known (measured) limitations (frequency response) of the whole system.

Figures 10 and 11 show two slices through the radar datacube after pulse compression, doppler
filtering and conventional beamforming. No tapering was used in any dimension. The single tar-
get is clearly visible. Presently there is unfortunately a doppler offset in the system depending on
a phase drift from pulse to pulse, which is probably due to the signal generator.

Direction-range slice. Range-Doppler slice
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Figure 10: Absolute value for doppler channel  Figure 11: Absolute value for beam 26 (DOA

82 (frequency 1.1 kHz) after pulse compres- 0°) after pulse compression, doppler filter-
sion, doppler filtering and CBF. No tapering ing and CBF. No tapering in any dimen-
in any dimension was used. Solid dark lines sion was used.

indicate the real position of the target.

4. High resolution direction of arrival estimation

Conventional beamforming versus high resolution direction of arrival estimation

In conventional beamforming (CBF) the received antenna signals are phase shifted to compen-
sate for the different lengths of the propagation paths to the different antenna elements. The sig-
nals can also be weighted (tapered) to produce low sidelobes and thereby reduce the influence
by other signals sources. A drawback with CBF is that its resolution, i.e. how close in DOA two
signal sources can be but still be seen as two sources, is limited by the size of the antenna, no
matter how high SNR or how much data are available.



High resolution DOA estimation (here abbreviated “HRDE”) methods use model based signal
processing. This means that they try to find a mathematical model that can generate the
observed signal. The model contains a limited number of parameters, e.g. directions to targets,
which are estimated from the observed signal. HRDE has some promising theoretical properties,
among others high angle resolution (better than the conventional beamwidth and not limited by
antenna size) and detection & estimation despite jamming. Other common names for HRDE are
Sensor Array Signal Processing and DOA Estimation.

HRDE methods can be of two types: spectral and parametric. Parametric methods estimate the
parameters (DOA etc.) of the signal sources directly. Especially popular are Maximum Likelihood
methods and approximations of them. Spectral methods, MUSIC [5] is probably the best known,
generate a directional spectrum, a continuous functions with peaks at signal source DOA:s. See
figures 12, 16 and 17 for examples. From these peaks the DOA:s can be found.

For some reasons CBF is suitable to use as the basis method. When required, HRDE can be
applied as a special radar function for the resolution of target groups, estimation of jammer direc-
tions, detection & estimation in jamming environments, handling of multipath etc. CBF can then
be used as a base estimate for HRDE. This makes it unnecessary to engage HRDE on all data.
This saves among others computation time.

Results from measurements

In figures 12 and 13, unmodulated continuous wave (CW) signals were used. Figure 12 displays
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Figure 12: Directional spectra for CBF (no  Figure 13: Resolution for the DOA estimation
tapering) and the Min-Norm method. methods WSF, Capon, MUSIC and Min-
Three signals sources are present at Norm. The circles are the estimated DOA:s.
angles -4.3°, 0° and 1.55°. SNR = 49 dB, Two circles at the same true DOA means
47 dB and 45 dB respectively. that the signals could be resolved. The

dashed lines are where true and estimated
DOA:s are equal. The conventional beam-
width is about 11°. From [4]. SNR = 50 dB.

directional spectra for CBF and the HRDE method Min-Norm [5]. CBF can not resolve the three
signal sources but Min-Norm can just resolve them. In the same measurement the method WSF
(Weighted Subspace Fitting [5]) delivered the estimates [-4.35, -0.05, 1.39] degrees for the
DOA:s.



Figure 13 shows the result for the four methods WSF, Capon, MUSIC and Min-Norm [5] when
two close sources have a varying angle separation from 0° to 0.88°. The SNR was about 50 dB.
It is notable that the resolution of some of them is better than 1/20 of the untapered conventional
beamwidth that is about 11°. Of course the resolution and accuracy obtained is dependent on
the quality of the calibrations.

5. Resolution of two targets in direction and range

Below is an example of the resolution of two targets. The waveform parameters were same as in
the example of the processing of the single target in section 3 but now two targets are present.
Target A has the DOA 0° and SNR about 37 dB. The range is 11 range bins, which after pulse
compression becomes 11+63=74 range bins. Target B has the DOA -13°, SNR 31 dB and is
delayed 3.5 us (23 range bins). The delay means that the range is 11+23+63=97 range bins.

Figure 14 shows a slice of the radar datacube after pulse compression, doppler filtering and CBF.
The two targets are clearly visible. In figure 15, MUSIC is used instead of CBF. The result is a
pseudo spectrum, that is not a measure of signal strength but a measure of the presence of sig-
nal sources. The spectrum is really narrow in the direction dimension but there are several peaks
in the range dimension. The reason for the peaks in the range dimension is probably that MUSIC
is sensible for the range sidelobes. This could maybe be avoided with lower sidelobes. As just
said the height of the peaks does not tell us the level of the sidelobes.

It is more interesting to use HRDE methods when the DOA separation is smaller than here. Then
HRDE can be used to resolve groups of targets in the same range bin, doppler channel and
beam. Conventional processing then points out in which range, doppler and beam to use HRDE.
Here, this could be range bin 74 and range bin 97. Figures 16 and 17 shows the MUSIC DOA
spectra for range bin 74 respectively 97. In figure 16 we know from the CBF that there can be sig-
nal sources around 0°. The peak at -13° is outside the conventional beamwidth and is therefore
probably false. The peak likely depends on the range sidelobes of the other target. In figure 17,
for the same reason, the peak at 0° is probably false.
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ABSTRACT

At the Defence Research Establishment of Sweden (FOA) an experimental S-band receiving digital
array antenna for radar applications has been designed and built. It consists of a horizontal uniform
linear array (ULA) of 12 antenna elements, whose digitized signals are processed in non-real time in
a computer. Accurate calibration is utilized.

We have compared several spectral and parametric direction-of-arrival (DOA) estimation methods
for varying DOA separations, number of samples and signal-to-noise ratios (SNR) on measured data
from an anechoic chamber.

At ideal conditions the resolution can be improved considerably with model based DOA methods
compared to conventional beamforming. We achieved a resolution below 1/10 of the resolution of
conventional beamforming.

1. INTRODUCTION

At FOA an experimental S-band receiving digital array antenna for radar applications has been
designed and built. In an anechoic some measurements have been conducted which have been used for
the comparison of some high resolution direction-of-arrival (DOA) estimation methods.

The experimental antenna itself and calibration procedures has been discussed earlier, e.g. in [7, 8]. An
early version of the measurement system was presented in [1]. Parts of the signal processing software
have been presented in [3] and a free version is available from the Internet [4]. Other measurement
results have been published in for example [2, 7]. This paper is in part based on the FOA report [5].

2. THE EXPERIMENTAL ARRAY ANTENNA

The experimental receiving antenna (figure 1) consists of a horizontal linear array of 12 antenna ele-
ments (with half a wavelength separation), receiver modules, A/D converters and buffer memories (fig-
ure 2). With careful calibration we can model the antenna as a uniform linear array (ULA). The antenna
has an agile frequency band of 2.8-3.3 GHz and an instantaneous bandwidth of 5 MHz. The sampling is
performed at an IF (intermediate frequency) of 3/4 of the sampling frequency 25.8 MHz of the 12-bit A/
D-converters. From the buffer memories the signals are transferred to a standard computer where the
1Q-conversion, down conversion, calibration correction and spatial signal processing are performed in
non-real time. Accurate channel equalization and spatial channel calibration are utilized. One or more
commercially available signal generators and horn antennas are used as the transmitters.
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Figure 1: The receiving experimental array Figure 2: Physical block diagram of the experi-
antenna in the anechoic chamber. mental radar system

3. MEASUREMENT ARRANGEMENTS

The measurements have been performed in an anechoic chamber at FOA. The distance between the
transmitter and receiver antennas (6 m) is too short be considered a far-field distance and consequently
near-field corrections must be applied.

4. METHODS FOR DOA ESTIMATION

We have compared the following methods for DOA estimation [6]:

e Spectral methods: Conventional beamforming (CBF), Capon beamformer, MUSIC and Min-Norm.
e Parametric methods for general arrays: Deterministic Maximum Likelihood (DML), Stochastic

Maximum Likelihood (SML), Signal Subspace Fitting (SSF) and Weighted Subspace Fitting (WSF).
e Parametric methods for uniform linear arrays (ULA): ESPRIT and Root-MUSIC.

For model based methods we assume two signal sources, the right number, as a priori knowledge. We
find the DOAs of the spectral methods by searching the spectrum. By the used search method, it possi-
ble to deliver only one of the two DOAs if there is only one clear peak in the spectrum.

5. DOA ESTIMATION AS A FUNCTION OF DOA SEPARATION

In the following graphs (figure 3-12) there were two equal strong (SNR =~ 50 dB ) signal sources with
constant carriers with a frequency difference of 0.2 MHz as waveforms. 64 time samples were used in
the DOA estimation. The first source had the DOA 0° and the DOA of the second source was varied
from 0° via 0.22°,0.44° and 0.66°, 0.88° to 1.54°. As a comparison, the conventional beamwidth is about
10°, which is also approximately the resolution of conventional beamforming. In the graphs, the mean
value and the standard deviation of the estimated DOAs of a set of 88 measurements are plotted for the
different DOA separations and different DOA estimation methods. The set consists of all measurements
from combining 11 mechanical azimuth angles (—20° to 20° in steps of 4°) of the receiving array
antenna with 2 carrier frequencies and 4 replicates. The measurements were not conducted in random
order. See figure 6 for how to interpret the graphs.
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Figure 3 show that only one DOA can be estimated by CBF and it is located nearly half-way between

the true DOAs.

The resolution for Capon (figure 4) seems to be slightly poorer than for MUSIC (figure 5) but it is diffi-
cult to determine because of the missing measurements with DOA separations between 0.88° and 1.54°.
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The similarity between the two methods can be explained by the fact that Capon and MUSIC are equiv-
alent when SNR — « and the SNR was very high in our measurements.

Min-Norm (figure 6) exhibits a better resolution than MUSIC (figure 5) but also a larger standard devi-
ation (where the resolution probability is high).

The start values in the optimization of the general parametric DOA methods were [—0.1°, 0.1°]. DML,
SML and WSF (figure 7, 8 and 10) have similar, and better than SSF (figure 9), performance with the
exception that SML failed for some measurements (for unknown reason). All the general parametric
methods (DML, SML, SSF and WSF) have a bias for the non-zero DOA which is increased when the
DOA separation is decreased. The bias for the zero DOA (0°) is more or less independent of the DOA

separation.
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All parametric methods behave poorly at the DOA separation of 0° in contrast to the spectral methods
which have the desired result of one source at DOA 0°.

The parametric methods for ULAs, ESPRIT (figure 11) and Root-MUSIC (figure 12), have a larger bias
and standard deviation than the general parametric methods. ESPRIT seems to have a larger standard
deviation than Root-MUSIC. Both ESPRIT and Root-MUSIC have a significant bias also for the zero
DOA and this bias is nearly independent of the DOA separation. The bias for the non-zero DOA is
increased when the DOA separation is decreased, as for the general parametric methods.

6. DOA ESTIMATION AS A FUNCTION OF NUMBER OF SAMPLES

We continue with DOA estimations where we have varied the number of time samples used in the esti-
mation from 2 to 100. The two signal sources were equal strong (SNR =~ 50 dB ) and had the DOAs 0°
and 0.66° respectively. The waveforms were constant carriers with a frequency difference of 0.2 MHz.
The methods MUSIC, Min-Norm, DML, SML, WSF, ESPRIT and Root-MUSIC were studied in a sin-
gle measurement without statistical analysis. All methods except MUSIC needed less than 25 samples
for convergence, although with some bias and variance. The differences in needed samples between
these methods seem small. MUSIC needed more than 30 samples. Due to space limitations no graphs
are presented here.

7. DOA ESTIMATION VERSUS SNR

In the last measurements the signal sources were located at 0° and 1.54°. The waveform was a constant
carrier. 256 time samples were used in the estimation. The sources were equal strong and the SNR was
varied from 1.4 dB to 50 dB in six steps. The result from a single measurement without statistical analy-
sis is presented in figures 13-14. MUSIC seems to require a higher SNR than the other tested methods
(figures 13-14).

8. FURTHER DISCUSSION

As can be seen in the graphs, the estimation of the DOA 0° often works better (can be resolved, lower
bias and standard deviation) than the other DOA. The reason for this is that the calibration of the receiv-
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ing antenna was conducted with the source with DOA 0°. However, this improvement applies only for
correction table calibration and not decoupling matrix calibration [8]. This is the reason for the high
bias and standard deviation of the zero DOA for ESPRIT and Root-MUSIC since these methods only
can use the decoupling matrix while the other methods use the correction table.

The standard deviation of the DOA estimates in this paper is partly due to the inaccuracy of the antenna
turn table [8].

There could be more factors, like carrier frequency and calibration method, than the ones studied in this
paper that affect the result. A more systematic investigation might show which factors and factor inter-
actions that affect the result.

In this paper we have not addressed the important and difficult problem of estimating the number of sig-
nal sources. This estimation decides the resolution performance, i.e. the ability to separate two close
sources.

9. CONCLUSIONS

It is not obvious how to define DOA resolution but nonetheless we draw the following conclusion. At
ideal conditions (accurate calibration, high SNR, no interference, etc.) the resolution can be improved
considerable with model based DOA methods compared to conventional beamforming. In our experi-
ments we achieved a resolution below !/ 10 of the resolution of conventional beamforming.

We also draw the following general conclusions from the result. The parametric methods for ULAs
have the largest bias. The methods DML, SML and WSF have the smallest standard deviation.
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Abstract: Terrain-scattered interference (TSI), that is, jammer signals reflected on the earth’s surface, is a significant problem
to military airborne radar. In auxiliary beam TSI suppression, the TSI in the main radar beam is estimated by a single or
several auxiliary beams and is subtracted from the main beam channel. The signal to subtract is the auxiliary beam
signals fed through an estimate of the ‘reflection system’, which describes scattering on the surface. The authors first present
results on the structure of this TSI suppression, on the estimation of the reflection system and on the quality of the
estimate. Then the authors derive theoretical expressions for the signal-to-interference plus noise ratio (SINR) and the
remaining TSI power for a single auxiliary beam. Since the SINR is directly connected to the radar performance, it can be
seen what factors affect the performance and how. It was noted that when the estimated reflection system is missing one or
more delays of the true system, the TSI filter cannot suppress the TSI signal completely. This phenomenon, which is called
‘TSI leakage’, has a very large impact on the performance. The SINR cannot be kept constant. Instead, an ‘SINR

improvement’ can be defined.

1 Introduction

‘Terrain-scattered interference’ (TSI) or ‘hot clutter’ are
signals from jammers which are reflected on the ground or
sea before they are received by a radar. In the mainbeam an
often weak target signal has to compete with TSI. TSI is a
significant problem to military airborne radar systems and
should be suppressed.

Several approaches to suppress TSI are proposed in the
literature. Low sidelobes [1], adaptive beamforming and
sidelobe cancellation (SLC) [2] are suggested to be used
against TSI in the sidelobes. Fast-time space-time adaptive
processing (STAP) [3-7] is proposed to be used against TSI
in the mainbeam. Fast-time means range bin to range bin
sampling. It does not mean fast execution. In cases where
both monostatic (normal) clutter and TSI exist, the
monostatic clutter is suggested to be suppressed either
separately before [7] or after [4, 7] the TSI suppression or
together with the TSI by three-dimensional (3D) STAP
[4, 8]. All three approaches have advantages and drawbacks
[4, 7]. Some of the literature about TSI suppression is not
widely accessible. After the year 2005 we have found
nearly nothing published about TSI suppression.

Fast-time TSI suppression methods for TSI in the
mainbeam are usually of one of two different architectures
[4], either the ‘auxiliary beam’ architecture (also called
‘sidelobe canceller’ [4]), where the TSI signal in the main
radar channel is subtracted by an estimated TSI signal from
a single or multiple auxiliary channels, or the ‘fully
adaptive array’ (also called 2D STAP [13] or ‘Direct Form
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Processor’ [8]), where all antenna channels are processed
together.

In the auxiliary beam architecture, the TSI signal in the
main radar channel is generated by a ‘reflection system’
with the transmitted jammer signal as input. This system is
created by scatterers on the ground or sea with different
time delays and directions of arrival. In the fully adaptive
array there is no explicit reflection system, since there are
no special main and auxiliary channels.

This article consists of two parts. In the first part (Sections
2 and 3) we utilise results from the field of ‘system
identification’ [9] and present a new way to view the
auxiliary beam architecture which is centred around the
reflection system. We model the reflection system by a
linear regression and employ least squares to estimate it,
which both are well-known theories. By describing the
reflection system as a linear regression we can include both
structures of the auxiliary beam architecture, namely ‘single
auxiliary beam’ and ‘multiple auxiliary beam’, in the same
framework and we can choose which time delays and
channels to include in the model of the reflection system.
By the least squares theory and extensions by us we obtain
theoretical expressions for the quality of the estimate of the
reflection system. These quality expressions can be
interesting by themselves but will become really interesting
in the second part (Sections 4-6), where we use them
in our derivation of theoretical expressions for the
remaining TSI power after suppression and resulting
signal-to-interference plus noise ratio (SINR) for a single
auxiliary beam when using estimated reflection systems.

1
© The Institution of Engineering and Technology 2013
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We can see what factors affect the SINR and how they do it. It
is well-known that the SINR is directly related to radar
performance in the form of probability of detection,
detection range and estimation accuracy. There the
advantages with our new way of viewing the auxiliary
beam architecture are realised.

We will see that our use of the reflection system is
equivalent to the ubiquitous sample matrix inversion (SMI)
method in the STAP and adaptive beamforming literature,
which makes our results widely applicable for auxiliary
beam TSI suppression.

Some of our results in Sections 2 and 3 are taken from our
conference paper [10] but we have extended them with much
new material. For instance, paper [10] only treated the single
auxiliary beam structure. Some material in [10] is removed
here. The results in Sections 4-6 are all new and not
published before.

Probably the best survey of TSI suppression methods is
article [4]. That article also describes single and multiple
auxiliary beam TSI suppression in a general form, by but
using the STAP SMI approach, which is different from
ours. It does not have any derivations of the suppression
methods but the derivations can be found in other literature.
Furthermore, it does not model the reflection system and
does not contain quality expressions. Gabel er al. [4]
assume that all delays are used, that is, there are no holes in
the delay sequence. Finally, Gabel et al. [4] do not consider
noise in the auxiliary channels.

In [8], an expression for the optimal SINR in the single
auxiliary beam is given but only for a known reflection
system. Neither is it stated where the receiver noise enters,
which makes a comparison with our results more difficult.
A classical result for SINR loss as a function of the number
of estimation data and model order for the fully adaptive
array when using estimated interference properties is
presented in [11]. It cannot be used directly for our problem
since the architectures of the suppression methods are
different. The result in [11] also assumes the data to have a
certain and known probability distribution (Gaussian). Our
results are not restricted to that.

In Section 2 we describe the two structures of auxiliary
beam TSI suppression, viz. the single auxiliary beam and
multiple auxiliary beam structures, and fit both these
structures into a general structure. Section 3 treats the
estimation of the reflection system, including theoretical
expressions for the quality of the estimate. Then in Section
4 we derive the theoretical expressions for TSI power and
SINR. We validate that theory with simulations in Section
5. In Section 6 we have a discussion and finally in Section
7 we give some conclusions.

Vectors are denoted by bold lower case letters, matrices by
bold upper case letters. Complex conjugate of a quantity b is
denoted by b*, transpose of a matrix B by BT and complex
conjugate transpose by B/,

2 Auxiliary beam TSI suppression methods

This section describes the auxiliary beam TSI suppression
architecture. Section 2.1 presents a general structure for this
architecture, which is then specialised to the single auxiliary
beam and multiple auxiliary beam cases in Sections 2.2 and
2.3. By the general structure and the specialisations we will
realise that the estimation methods and the properties of the
estimated reflection system in Section 3 are valid for both
the single and multiple auxiliary beam structures.

2
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2.1 General structure

Auxiliary beam TSI suppression can be depicted by the block
diagram in Fig. 1. The principle is to estimate and remove the
TSI signal #(¢) in the radar main channel signal m(¢), where
we look for the target. We utilise one or several auxiliary
radar beams directed towards the jammer or towards the
TSI in other directions than the main beam in order to
estimate the TSI signal in the main beam. Since we employ
a signal which is both spatial from an array antenna and
temporal in fast-time, the suppression method belongs to
the fast-time STAP group.

The received radar signal in the main channel is (see Fig. 1)

m(1) = By (ry(t) + sy (1) + ny (1)) = By (ry(2) + ey (1))
— K(t) + elt)
(1)

where ny(¢) are the TSI signals, sy(¢) is the reflected radar
signal from targets and (normal) clutter, m(f) is the
receiver noise in the antenna channels used for the main
channel and ey(#) = sm(?) + mv(?). The block By is the main
channel beamformer. The signals 7(¢)=Byn(f) and e(t)=
Byiey() are the TSI signal and ‘noise’ in the main channel.
The subscript M is used for the main channel and A for the
auxiliary channels.

The block Hy(g) in Fig. 1 is a reflection system from the
transmitted jammer signal d(¢) to the main channel antenna
elements. In the auxiliary channels, Ha(q) and B, are
reflection system and beamformer, respectively, and va(?) is
receiver noise plus any remaining interference (jammer and
radar signal).

The beamformers By, and B, are static (i.e. memory-less)
linear systems with spatial signals as input and output.
These systems can be represented by matrices. Compare
with the blocks ‘s’ and ‘B’ in Fig. 3a in [8]. The systems
Hy(q), Ha(q), Hyia(q) and Hy () (see below) are linear
dynamic systems in fast-time. The input and output signal
vectors are spatial. The beamformers By, and B, are chosen
by us and are therefore known, while the systems Hy(q)
and Hy(g) are unknown.

V(2
A( ) Auxiliary

channels
+ t ~
H, @ 15" B, 20 Hyia(q)
d(r) I
Estim.

0 )

+ Main channel +
H,/(q) B >
| Y T = )+ e) i)

ey (t) = s3,() +ny,(1)

Fig. 1 Block diagram of auxiliary beam TSI suppression

d(t) is the transmitted jammer signal. In the auxiliary channels () is the
receiver noise plus remaining interference (jammer and radar signal), H,(q)
is the reflection system and B, is the beamformer

In the main channel, 7(¢) is the reflected jammer signal, Hy,(¢) and By are
the reflection system and beamformer, sy(f) is the reflected radar signal
from targets and monostatic clutter and my(g) is the receiver noise. Hyy ()
is the estimated reflection system in (3)
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The system Hya(g) such that

Hya(9)BAH \(q) = ByiH\i(9) @

is what we call ‘the reflection system’. If we estimate Hyy, (9)
such that

Hyi\(q)BH \(q) = B\Hy(q) 3)

then the TSI in the main channel can be cancelled perfectly.

2.2 Single auxiliary beam

In the ‘single beam structure’, only a single auxiliary beam is
used to estimate the TSI signal. The beam is aimed directly
towards the jammer, while placing a null in the main beam
direction. We assume that the auxiliary beam can measure
the direct jammer signal perfectly, giving BaHa(g)=1
(a scalar) and ax(7) = a(t) =d(t) + v(z). The block diagram in
Fig. 1 can be simplified to Fig. 2, where H(q)= ByHu(q)
and I:IM Alg) = H(g) with an estimate of the reflection
system H(g). The signals are r(t) =Bunu(?), s(t)=Bysm(?),
n(1) = Bymy(1) and v(2) = Bava(0).

Other names of this TSI mitigation method are ‘selected
auxiliary TSI mitigation’ [4] and ‘single beam hot clutter
canceller’ [5]. The method is also said to be treated in some
not widely available literature, like [12—14]. This approach
is also commonly used for noise and interference reduction
in time [15] and in space [2, 16].

Auxiliary

V(I) channel
‘)\Jf a(r)

o H(g)
d(t) |
Estim.
(1)
H(q) r(t) + Main channel u

T+ m(t) = r(t)+e(t) + m(r)

e(t) = s(t)+ n(t)

Fig. 2 Block diagram of single auxiliary beam TSI suppression

d(t) is the direct jammer signal. v(7) is the receiver noise plus remaining
interference in the auxiliary channel. H(g) is the reflection system and 7(7)
is the TSI (hot clutter), s(¢) is the reflected radar signal from targets and
(normal) clutter and n(t) is the receiver noise in the main channel

Auxiliary

VAB(t) channels
+ooau) [
B,H ,(q —>(+ ) . Hya(q)
d(t) I
Estim.

r(t) + Main channel
b om() = () +et) T (D)

#(1)

H(q)

e(t) = s(t) +n(t)

Fig. 3 Block diagram of multiple auxiliary beam TSI suppression

d(t) is the direct jammer signal. v45(¢) is the receiver noise plus remaining
interference in the auxiliary channels. In the main channel, H(q) is the
reflection system, 7(7) is the TSI signal, s(z) is the reflected radar signal
from targets and monostatic clutter and n(f) is receiver noise
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Note that the processing is conducted in two steps:

1. Adaptive processing in space: Estimate (in the auxiliary
channel) and suppress (in the main channel) the direct
jammer signal. This is done by forming a beam in the
auxiliary channel and placing a null in the main channel
towards the jammer.

2. Adaptive processing in time: Suppress the TSI signals in
the main channel.

Here we assume a single jammer, d(f)=d(t). If there are
several jammers, each jammer has to be suppressed
separately. We form an auxiliary beam towards the direct
signal of each jammer while placing nulls in the antenna
pattern towards the direct signal from the other jammers.
For this we need sufficiently many spatial degrees of
freedom. After the nulling, the remaining jammer signals in
the auxiliary beam can be regarded as noise.

Despite the simple structure of single auxiliary beam TSI
suppression, it has some advantages over other suppression
methods, see [4, 7, 17]. It also has some drawbacks, see [4, 5].

2.3 Multiple auxiliary beams

In the ‘multiple beam structure’, also called the ‘Generalised
sidelobe canceller’ (GLC) method [4, 5], M beams are
formed, one of which is the main beam and the other M — 1
auxiliary beams must be chosen orthogonal to the main
beam to prevent target leakage into the auxiliary channels.

In this structure, Fig. 1 can be simplified to Fig. 3. This
block diagram is similar to the one for the single beam
structure but with the difference that there are now several
spatial channels in the systems and signals in the auxiliary
branch. Note that now, BaHa(q)# 1 (not a scalar) and
a,(t) = B\H \(q)d(t) +vpop(t) with wap(f) =Bava(t). We
again assume a single jammer.

In the multiple beam structure, the reflection system
estimate Hyx(g) should not be an estimate of H(g)=
ByiHyi(q) but of Hya(g) in (2). We call Hya(g) the
‘generalised reflection system’. The signals r(¢), s(¢), n(r)
are as in Section 2.2.

Also in this structure we have two-step processing as in
Section 2.2 but now we have several beams in the auxiliary
branch by which to estimate the jammer signal. There are
advantages and drawbacks also with the multiple beam
structure of auxiliary beam TSI suppression, see [4].

3 Estimation of the reflection system

We define a model of the reflection system for the single beam
and multiple beam structures of auxiliary beam TSI
suppression in Section 3.1. Then, in Section 3.2 we show
how the reflection system can be estimated. In Section 3.3
we present theoretical expressions for the quality of the
estimated reflection system.

3.1 Model of the reflection system

We model the TSI signal in the main channel 7(¢) with a linear
regression

() = @' (Hh )

The vector ¢'(f) only contains signals a(f) or axf) (see
below) and h are the impulse response coefficients in the

3
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model of the reflection system Hyia(g) with Hya(g) being
defined by (2). The elements of ¢' () are called regressors.
Since ¢'(¢) only contains input signals of the system, (4) is
a finite impulse response (FIR) system. Other model
structures would also be possible, for example, auto-
regression with extra inputs (ARX) or output error (OE) [9].
Especially for the single beam structure, FIR model of the
reflection system Hya(q)=H(g) is natural because the
reflection system can be seen as created by reflections of
the transmitted jammer signal at a finite number of point
scatterers with different delays.

In the single beam structure, the vector ¢' (f) contains the
direct jammer signals

") = [a(0), ..., alt = Tgy + )]

and
h = [h(0), ..., h(Tsy — DI" )

where T, is the maximum time delay for this structure.
In the multiple beam structure the vector qu(l) contains the
received jammer signals in the M — 1 auxiliary channels

) =[a)(t), ..., a\(t = T+ 1), ..oay_ @, ...,
ay_(t — T e+ D]

where a,(t) is the signal in the ith auxiliary channel at fast time
t and Ty ¢ is the maximum time delay for this structure. Here,
the impulse response & of the system Hyia(gq) (2) is

h=[m©O), ... (Tg.c = D, -y 0), -

By (Tere — DI

where /() are the coefficients for the ith auxiliary channel at
fast time delay 7.

The number of coefficients in & is n=Tg, for the single
beam structure and n=Tgr (M — 1) for the multiple beam
structure if there are no ‘holes’ in the possible sequence
of coefficients. Note that it is not necessary that the
coefficients are consecutive in time and antenna channels.
There may be ‘holes’ in the sequence. We may keep the
most important coefficients (the most important scatterers),
discard the other and obtain a better estimate of the
reflection system. This is a problem in itself. It is related to
‘compressed sensing/sampling’ [18]. See [9, 19, 20] for
general information on how to choose regressors/
coefficients. We will see in Section 5.3 that the choice of
proper coefficients is important for radar performance.

3.2 Estimation of the reflection system

There are several methods in the literature to estimate a
system like the reflection system without the noise wA(¢) in
the auxiliary channels. In [10], we saw that the least
squares (LS) method [21] and the prediction error method
(PEM) [9], well-known in the field of ‘system
identification’, are equivalent for this system. The Wiener
filter, which minimises the minimum mean square error
(MMSE) [22], can also be employed for the reflection
system estimation [5]. Compared with the PEM/LS method,
the Wiener/MMSE filter uses ideal ensemble mean values
instead of averages of measured data. The ensemble mean

4
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values must be estimated and natural choices are the
averages used in the PEM/LS method. Then the PEM, LS,
Wiener and MMSE methods will give exactly the same
estimator of the reflection system. Therefore the expressions
for the quality of the estimated reflection system in Section
3.3 will be valid for all these methods.

We will here show how the reflection system can be
estimated with the (deterministic) LS [21]. We can write (1)
in a different way

m(ty) = r(ty) + e(ty) (6)
and the estimate of the TSI signal
#(1y) = Alig)h
where m(ty) = [m(to), ... m(ty +N = DI', r(t) = [r(sy),

g+ N =D ety) = [elty), ..., elty+N — D],
(ty) = [#(ty), ... #(ty + N —1)]" and

@'(15)
Alty) = | &'(1, + n—1) @)
Gty + N~ 1)

In (6) and (7) the time index f, indicates the point of time
when the estimation is performed. In the following, #, will
be omitted in order to simplify the notation. The quantity N
is the number of ‘estimation data’ or ‘identification data’.
The estimation data consists of a(f) or ai(f) in A and of
m(t) in m.

The estimation problem is with this notation for both the
single and multiple beam structures

h = arg mhin Vy(h) 8)
with the loss function V(h)
V() = lm — | ©)

where ||-]| denotes the Euclidean norm of a vector. Without
radar returns in the main channel we choose m =7 = Ah
Equation (8) has the solution

h=arg min V() = @A"4)~'A"m (10)

If we define Nfy = A™m and NR,, = A"A, that is

1 N—1 1 N-1
fy=52_ ¢ OmoandRy =23 ¢0e' () (1)
=0 t=0

we can write the solution (10) as

h=Ry'fy (12)

We see that this is also the PEM estimate [9]. Furthermore, we
realise the matrix Ry is the sample matrix estimate of the
ubiquitous interference covariance matrix in adaptive
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beamforming and STAP [4, 8]. Thus (12) is the usual SMI
filter weights of the SLC architecture of adaptive
beamforming and STAP [4, 8]. This means that our results
apply to the usual adaptive beamforming and STAP filter.

We now generalise the LS estimation to the weighted least
squares problem (WLS) by introducing the weighting matrix
w

h=arg min Vy (k) (13)
with the loss function Vy(h) now using a weighted norm

Vy(h) = |lm — f||, = |m — AR|l},
= (m — AR 'W(m — Ah) (14)

and with the solution [21]
h=arg min V() = A"wa)' A wm (15)

if (4"WA) is invertible. With W =T the solution (15) is the
same as the unweighted LS solution (10).

The weighting matrix W in WLS is useful when the noise e
is not white. The noise e could be non-white when the target
is distributed or the clutter is correlated, in both cases when
the radar resolution is high. By choosing the weighting
matrix as

w=®R)" (16)

with R, = E{(e — E{e})"(e — E{e})T} we achieve the
smallest variance of the estimate /. This can be realised by
using the Gauss—Markov theorem in [21] and our definition
of the covariance matrix in calculations similar to the ones
in [21]. This estimate / is called the ‘best linear unbiased
estimate’ (BLUE), the ‘minimum variance unbiased
estimator’ (MVUE) or the ‘Markov estimate’. See also [9].

If the noise v(¢) in the auxiliary channels is not negligible,
an approach is to use total least squares (TLS) [21, 23]. In
[24], LS and TLS were compared in three radar applications
for ‘cancellation of electromagnetic noise-like interference
in modern radar systems’. TLS gave better performance in
two of the applications and LS in one. TLS was less robust
than LS and required more computations. The conclusion
was that LS is the preferred choice. In our application, the
single auxiliary beam structure might cope better with the
noise v(¢) in the auxiliary channel than the multiple beam
structure because the jammer signal is stronger compared
with the noise. Therefore LS could be appropriate for single
beam and TLS for multiple beam TSI suppression.

Important aspects on employing auxiliary beam TSI
suppression is the point of time to estimate the reflection
system, the point of time to apply the estimate and what
estimation data to choose. Since the TSI is non-stationary,
the reflection system must be updated regularly, typically
once for each pulse repetition interval (PRI) [4, 7]. The
application of the system estimate should be as close as
possible in time to the estimation data and the estimation
data should be free of monostatic clutter [4, 7]. The single
beam structure might cope better with monostatic clutter
and targets in the estimation data because the direct jammer
signal is strong in the auxiliary channel because the beam is
aimed directly towards the jammer.

We will see in this article that the number of estimation
data N should be large for good quality of the estimated
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reflection system and for good radar performance (SINR).
However, if we choose too many estimation data some of
them will be outdated because of the non-stationarity of
the TSI. This will result in lower performance [7]. See
Rabideau [7] for suggestions on how to obtain estimation
data and how to apply the suppression filter, that is, the
reflection system.

To cope with large signal dimensions and lack of sufficient
estimation data in STAP, rank reduction methods are
suggested in the literature. In our auxiliary beam TSI
suppression architecture, rank reduction can be performed
by a matrix multiplication on the received radar snapshot,
see [8]. The beamforming matrix B, in Fig. 1 may contain
a matrix for spatial rank reduction.

3.3 Quality of the estimated reflection system

3.3.1 Bias of the estimate: Assume that the (true)
received signal in the main beam is

m=Ah,+e 17)

where the jammer signals in A are deterministic, / is the true
impulse response of the reflection system and the stochastic
vector e=s+n is our ‘noise’ (consists of target and clutter
reflections s and the receiver noise #). Then, from (15) and
(17) the WLS estimate of & will be

h = @A"wa)"'Atwm
= A"WA)'A"W(AhR, + e)
= hy + (A"WA) ' A" We (18)

The bias of the estimated impulse response is

b =E{h} —h,
= E{A"wA)~ A" we)}
= A"WA) AW, (19)

where m, = E{e}. If the mean value of e is zero, that is, m, =0,
the bias of the estimate £ will be zero. This can also be
realised using results from system identification by noting
that our FIR model m=A4h+e is at the same time an OE
model [9]. It is known that it is possible to estimate OE
models without bias if the true system can be described
exactly by the model. This is valid even if the noise model
cannot describe the true noise system. However, this would
not be the case if we had general ARX structures [9]. These
would not be of the OE structure. Ljung [9] has more
information about this. If the mean value of e is not zero,
then the bias of the estimate & will probably not be zero.

If the criterion is unweighted, that is, W=1I, the bias
simplifies to

1
b= NRNIAHme (20)

Since A consists of the jammer signal d(), we obtain the
following

bocl/ /A 1)

5
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where « means ‘proportional to” and A4 is the jammer power
in the estimation data.

We see from (19)—(21) that the bias depends on the mean
value of e, the received jammer signals in A (especially the
jammer power Ay), the weighting matrix W and the number
of estimation data N. We realise from (18) that the bias is
independent of the colour of the noise e(?).

We have performed some simulations to validate the
quality expressions for the reflection system. With the ideal
radar setup and ideal reflection system in Section 5.1, our
theoretical bias and estimated bias (considered the truth)
agreed excellently. For the realistic setup and realistic
system, the bias agreement was not so good.

3.3.2 Covariance of the estimate: 1If there is no bias, that
is, E{h} = h,, in the estimated coefficients &, the covariance
matrix of & is, from (18)

Py = Cov{h} = E{(h — E{h})"(h — E{h})"}
= E{A"WA) " ATW* e e"WTA* (A wA) T}
= @A"WAH)TATW R, WA ATWTAY) ! (22)

where B*=(B™')*=(B*) ' and B" = (B~')" = (B") .

If the noise e is white, that is, its covariance matrix R, = A.[,
where A, is the power of e(f) in the estimation data, and the
criterion is unweighted, that is, W=1I, the covariance
simplifies to

Py = LATA) = (@MY = R (3)

where Ry is given by (11). When we derive the remaining TSI
power and SINR after suppression (Section 4.1) we need (23).
In [9], similar calculations as here are performed but only for
systems with real valued signals. The application of TSI
suppression is not treated in [9, 21]. Since A consists of the
jammer signal d(¢), the following is also valid

Py oc 1/(E{d (1)}) = 1/ (24)

We see, stronger the jammer better the k.

The true power A, of e in (23) is not known but can be
estimated. If E{e} =0 and e is white, an unbiased estimate
is given by [9]

« N
A, = Vy(h
e N —n N()

where V(h) is the loss function (9) or (14). Thus an estimate
of Py in the white noise case is

- Lo
Py =G ARy 25)

When the bias of & is zero and n and N are large, we have
approximately for the variance of the frequency function of
the estimated jammer reflection system H(g) [9]

n P (w)

Var{H(e/*|h)} ~ N ()

(26)

where @ (w) and ® () are the frequency spectra at estimation

6
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for e(t) = s(¢) + n(t) and d(t), respectively. Here we clearly see
that increasing the model order n makes the estimated model
worse but increasing the number of estimation data N makes
the model better. Increasing the ‘noise’ (target, clutter and
receiver noise power) and/or decreasing the jammer signal
power at estimation time will make the estimated model
worse and vice versa.

3.3.3 Noise in a single auxiliary channel: We now
look at what happens for the single auxiliary beam case if
we have estimated the reflection system as in Section 3.2,
but there is noise present in the auxiliary channel at
estimation time, that is, v(t) #0. Then k in (12) and (15)
will not be optimal but we can still compute the covariance
P, = Cov{h}. We assume now that d(t) and v(t) are
uncorrelated in time and with each other. This assumption
should be valid, except perhaps for a repeater jammer,
when d(f) might be correlated in time. We have not seen
any literature about TSI and its suppression for repeater
jammers. Then

1 N—-1
Ry =+ (Z ¢*(t)¢T(t)> =g+, @D
t=0

where A4 =E{|d(1)?|} and A, = E{|v(r)|} are the jammer power
and auxiliary noise power in the estimation data and 7, is the
n % n identity matrix. If d(f) and v(¢) are ergodic processes
then Ry will converge to the right side of (27) when
N — oo. For limited N (27) will be an approximation. From
(23) and (27) we now obtain the covariance matrix of the
estimated reflection system

1 _ 1A,
P, = NA(,(RNI)* ~ NL A I, (28)

Here we see how the number of estimation data, the power of
jammer, auxiliary channel noise and main channel noise
(target, clutter and receiver noise) at the estimation
influence the variance of the estimated reflection system. It
seems like in (28) that stronger noise in the auxiliary
channel at the estimation will give a better estimated system
and better TSI suppression. However, the estimated
coefficients will probably obtain a bias because v(f) is a
false ‘jammer signal’ which is not present in the main
channel. This we have seen by simulations. We will need
(28) in Section 4.1.

In our simulations with the ideal radar setup and ideal
reflection system in Section 5.1, our theoretical variance
and estimated variance (considered the truth) was excellent.
For the realistic setup and realistic system, the agreement
was rather good. We noted that it is important to take the
noise v(¢) in the auxiliary channel into account as in (28).

4 Theory for TSI power and SINR
In this section, we derive theoretical expressions for the

remaining TSI power after suppression and the SINR in the
single auxiliary beam structure.

4.1 Remaining TSI power after suppression

First, we derive expressions for the remaining TSI power
in the main channel before and after suppression. These
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quantities are the key quantities from which we can derive
other quantities like the SINR.

We model the true reflection system coefficients /() as
stochastic and the estimated reflection system coefficients
h(t) as the true coefficients A(¢) plus zero mean uncorrelated
errors &(t)

h(t) = h(1) + &(1) (29)

This implies that the bias of the estimated coefficients will be
zero (Section 3.3.1) and the vectors A and & in (5), (12) and
(15) will be stochastic.

The signals r(¢) and 7(¢) are then stochastic processes which
are statistically dependent on A. The powers, expectations and
variances which we compute are conditioned on 4. When we
write V{A(?)}, we mean V{A(f)} = Var{h(t)|h}, which is the
variance of the coefficients of the estimated reflection system
when # is known. This variance is the diagonal element of Py
in (22), (23) and (28).

If we assume d() is a white process, we can write the TSI
power in the main channel without suppression as

2
g

n—1

Power{r(t)} = E{|r®)]*|h} = E{ > " h(nd(t — 7)
=0

n—1
= E{Z Ih(DI*|d( — ﬂﬂh}
=0
n—1
=P,y E{A(DI I}
=0

n—1
=P,y k@I’ = P,lk|?

=0

(30)

The third equality follows from d(¢) being uncorrelated in
time. The quantity P, is the jammer power during TSI
suppression filtering. ||| is the Euclidean norm of vector &
and is also a measure of the strength of the true reflection
system. We see in (30) that the power of () is dependent
on jammer power and the strength of the reflection system,
as expected.
Now, we first note that

V{h(t)} = Var{h(t)|l}
= E{le()]*h} = E{|2()]’} 31

by utilizing (29), the zero mean of &(¢), and that A(¢) and &()
are uncorrelated with each other. We observe that the variance
of the estimated reflection system is independent of the
strength of the true reflection coefficients |/ (z)|.

Then, if we assume the following: the number of estimated
system coefficients is the same as the number of true
coefficients (=n); the delays are the same in the estimated
and the true systems; d(f) and v(f) are white stationary
processes in time; d(z), v(¢), h(t) and &(z) are uncorrelated
with each other, we obtain the power of the remaining TSI
signal in the main channel after suppression as (see
Appendix)

Power{r(1) — (1)} = (Pg + P)Tr{Py} + P, [k|*  (32)
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where P, is the power of v(¢) during TSI suppression filtering,
Py is given in (22), (23) or (28) and Tr{B} is the trace of a
square matrix B (= the sum of the diagonal elements). We
see that, Power{r(f) — 7(¢)} is dependent on jammer power
and auxiliary channel noise power at TSI suppression, the
variance of the estimated coefficients and the strength of
the true system. Note that in the term P,||k||%, P, belongs to
the auxiliary channel and |l4]|? to the main channel.

The signal e(t) = s(¢) + n(¢) does not seem to matter for this
computation. It is not part of the calculation of the remaining
TSI signal or power in (32). However, e(f) matters for
estimation of the reflection system and therefore also for the
remaining TSI signal or power, as we will see.

Now, we utilise (28). For limited N this equation is an
approximation as noted in Section 3.3.3. For us it is only
important that the diagonal elements are sufficiently correct
because of the trace operation in (32) which gives with (28)

1 A
TrPy} = Tr| e g l_n__ A (33)
N +4, NAg+A)
If we insert this in (32) we arrive at
Power{r(t) — i(t)} = (P4 + P,) n__ A +P,|k|* (34)
r(t) — it} = ) \
NG +AY)

We see that the remaining TSI power also is dependent on the
model order n, the number of estimation data N and signal
powers [jammer, auxiliary channel noise and e(f)] during
the estimation.

It appears in (34) as if a stronger noise in the auxiliary
channel at estimation gives a lower TSI power. See Section
3.3.3 for a comment on this.

If P;=Xq and P, =1, then (34) simplifies to

Power{r(1) — ()} = %,\e + P,k (35)
which is independent of jammer power.

4.2 Signal-to-interference plus noise ratio

Now, we will derive expressions for the SINR for the single
auxiliary beam structure. The SINR is the principal radar
performance measure, directly affecting the probability of
detection, detection range and estimation accuracy.

The SINR without TSI suppression is, using (30)

P, P

SINR, = ‘ = ;
Y~ Power{r(t)} + P, P,llh|>+ P,

(36)

where P is the target power and P, the receiver noise in the
main channel at TSI suppression filtering. We assume
absence of monostatic clutter at suppression. Such clutter
could be handled separately as described in [7]. This SINR
is dependent on jammer power and the strength of the true
reflection system.

The SINR with TSI suppression is using (32)

P
SINR,, = z
" Power{r(t) — #(t)} + P,
P,
— s > (37)
(P;+ P)Tr{Py} + P, k| + P,
7
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This SINR is dependent on jammer power and auxiliary
channel noise power during TSI filtering, the variance of
the estimated reflection system coefficients and on the
strength of the true reflection system.

Using the expression in (34) we also obtain

P
SINR,, ~ . . (38)
(Py+ P b oy + PRI + P,

Here we note that the SINR also is dependent on the model
order n, the number of estimation data N and the jammer
power, auxiliary channel noise power and power of e(t)
during the estimation.

With P,=2, and P, =, this simplifies to

P

SINR, ~ -5
NA. + P Rh|"+ P,

(39)

which is independent of jammer power. Thus, the SINR
should be able to be independent of jammer power. The
reason is that a stronger jammer at filtering is balanced by a
better estimate of the reflection system. We see that when
N — oo, there will still be an SINR loss because of noise in
the auxiliary channel. This is not the case in the expression
in [11]. The SINR expressions in [8] show no dependence
on the number of estimation data because they assume
known TSI properties.

5 Simulations of TSI power and SINR

In this section, we validate our theory for TSI power and
SINR against simulations. We will see that the theory
agrees well with the simulations despite the fact that the
assumptions for the optimal TSI filter are not completely
fulfilled. The exception is when there are missing true
delays in the model of the reflection system but we have an
explanation for this.

5.1 Simulation setup

The simulation scenarios consist of two parts, definition of the
true reflection system and definition of the rest of the scenario.
The latter we call the ‘radar setup’.

In the ‘ideal radar setup’ there is no noise v(¢) in the
auxiliary channel and no target in the estimation data. In
the ‘realistic radar setup’ there is one point target (power
20 dB) at range Ng/2 in the estimation data and noise ()
(zero-mean white complex Gaussian with power 0 dB). The
number Ny is the number of range bins.

Four different true reflection systems have been employed.
The ‘ideal system’ is a simple reflection system with n=10
complex coefficients with amplitude 0.1=-20dB and
uncorrelated uniform random phase, see Fig. 4. The (more)
‘realistic system’ has uncorrelated complex Gaussian
coefficients with delay dependent variance [0,1 exp( —#/10)]%,
see Fig. 4. The number of true coefficients is the same as
the number of estimation data, which usually is much larger
than the number of estimated coefficients. The system
‘fullconst+s’, is like the ideal system but has one more
coefficient, which is weak (amplitude 0.01 = —40 dB). The
system ‘fullconst+1°, is like ‘fullconst+s’ but the extra
coefficient is strong (amplitude 0.1 =—-20 dB).

Especially in wireless communications, reflection systems
have been studied, for example, in [25-27]. The

8
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Coefficients of reflection systems
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Fig. 4 Absolute value of the impulse response coefficients of the

ideal and realistic system types used in the simulations

Only one realisation of the realistic system is shown

measurements in [26] are somewhat similar to our ideal
system. Our more realistic reflection system does not
behave exactly as the measurements in [25, 27] but has a
character similar to them. The simulations assume either
that no monostatic clutter is present or that it can be
suppressed separately (see Section 1).

For both radar setups the noise n(¢) in the main channel was
zero-mean white complex Gaussian with power 0 dB. Also at
suppression filtering there was a point target (power 20 dB) at
range Ny/2. The jammer power P, at suppression was either
constant at Py=E{d*(t)} =20 dB or varied from —20 to
+60 dB in steps of 1 dB. In most simulations A;= P, but in
Section 5.4, A, is fixed at A;=20 dB. There were different
random reflection systems for each used number of data N
but the same random system was employed for all used
different jammer powers P, The estimated system was
always of FIR structure with n=10 coefficients. The
number of Monte Carlo simulations was 100.

We will in the simulation results show two types of graphs.
First, we will show graphs of the power of the TSI signal
in the main channel without suppression, r(¢), and with
suppression, r(f) — 7(f) (also called the ‘remaining TSI
signal’). Both theoretical values according to (30) and (34)
and values estimated from the simulations are displayed.
This will give four curves in each graph, labelled ‘Theo
r(t)” (30), ‘Theo8 r(t)-rHat(t)’ (34), ‘Sim r(t)’ (estimated,
without suppression) and ‘Sim r(t)-rHat(t)> (estimated,
with). See Fig. 5 for an example.

Second, we will show graphs of the SINR with or without
TSI suppression. Both theoretical values from (36) and (38)
and values estimated from the simulations are displayed.
The four curves are labelled ‘“Theo wo.” (36), ‘Theo8 w.’
(38), ‘Est wo.” (estimated, without suppression) and ‘Est w.’
(estimated, with). See Fig. 5 for an example.

The values estimated from the simulations are considered
the truth in all graphs.

5.2 Results for the ideal and realistic scenario

With the ideal radar setup and the ideal true system the theory
agrees very well with the simulations (not shown here). With
the realistic radar setup and the realistic true system the theory
for the TSI power and the SINR after suppression only agrees
with the simulations for jammer power P, < 10 dB (Fig. 5).
We will see the reason for the failure in Section 5.3. For the
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ideal true system the TSI suppression always succeeds in
keeping a constant SINR despite an increasing jammer
power, which is also predicted by (39). See the ‘ideal’
curve in Fig. 6. For the realistic true system the constant
SINR cannot be maintained but we can define an ‘SINR
improvement’ as the difference between SINR with TSI
suppression and SINR without TSI suppression (Fig. 5).
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5.3 Results for missing delays

Fig. 6 shows the TSI signal power as a function of jammer
power for different true systems. The realistic radar setup
was employed. As a function of jammer power there are
different deviations of the theory from the simulation
depending on the true system. As a function of number of
data, only for the true system ‘fullconst+ 1’ the theoretical
value of the remaining TSI power differs significantly from
the estimated one (not shown here).

For the ideal true system the estimated system has all delays
which are present in the true one and the theory agrees with
the simulation in Fig. 6. In the true systems ‘fullconst+s’
and ‘fullconst+ 1’ there is an extra delay in the system
which is not present in the estimated one. The true system
‘fullconst+s” has a small extra coefficients for the extra
delay, causing a weak TSI signal to slip into the main
channel. The true system ‘fullconst+ 1’ has a strong extra
coefficient causing a stronger TSI signal to slip in. Since
the estimated system does not have a coefficient for the
extra delay, it has no chance to cancel this extra TSI signal.
We call this phenomenon ‘TSI leakage’ and it can be seen
as the disagreement between theory and simulation in Fig. 6.

5.4 Different jammer power for estimation and
filtering

Fig. 7 displays what happens if the jammer power is not the
same for estimation and filtering. The graph depicts the TSI
signal power as a function of jammer power P, at
suppression for different true systems while the estimation
jammer power is fixed at A,=20 dB.

For the case without TSI leakage (ideal true system) our
theory agrees well with the simulation. Also for the case
with small TSI leakage (true system ‘fullconst+s’) the
theory agrees. Only for the true system ‘fullconst+ 1’ the
theoretical value of the remaining TSI power differs
significantly from the estimated one.

6 Discussion about radar performance

In the derivations of the theory in Section 4 we have utilised a
number of assumptions. We have seen that having correct
delays in the estimated reflection system is very important
and our theory will fail if this is not the case. The important
thing is that the estimated system is not missing delays with
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strong system coefficients. Compare the result for the systems
‘fullconst + s’ and ‘fullconst + 1°. In reality, the true reflection
system will most likely not be limited in delay but the impulse
response will wear off indefinitely. This would make it
impossible to completely cancel the TSI. We will not
achieve a constant SINR independent of jammer power. We
will instead obtain a certain SINR improvement. One way
to increase SINR improvement could be, not to choose the
delays in the estimated reflection system consecutively but
choose the delays with the strongest true coefficients. See
Section 3.1 and the references there. In the opposite case, if
we had too many delays in the estimated system, the filter
would have the ability to cancel all leaking TSI signals but
it also would give a higher variance of the estimated system
coefficients, see (26), and therefore lower SINR, (38). It
will be a trade-off.

It is often suggested in the literature [3, 28, 29], that Ry =
Ry; for the required number of fast-time taps Ry, where Ry; is
the maximum delay of the true reflection system. We have not
seen a proof for that. In [30], the condition

NaRi — 1)

Ry >
ft L—N,

(40)

or the required number Ry which ‘guarantees hot-clutter
rejectability’ for fully adaptive fast-time STAP is given. In
(40), L is the number of antenna channels and N4 the
number of jammers. Equation (40) is a sufficient but not
necessary condition and it does not guarantee the resulting
SINR. We can realise from (40) that to some extent there is
a trade-off between spatial and temporal degrees of freedom
(DoFs) in order to suppress the TSI. Using (40) we can also
see that the requirements on Ry can be both Ry < R or
R > Ry depending on the case. In our simulations we
have seen that Ry > R; is necessary to avoid TSI leakage,
which is in agreement with [3, 28, 29]. However, we have
no extra spatial DoFs to play with as in (40).

Another assumption to question is whether the jammer
transmits white noise. This is a very common assumption
and reasonable but we have not investigated what happens
for non-white jamming. We have not seen any literature on
TSI suppression for non-white jamming. We also assume
that the signal e(r) =s(¢) +n(¢) is white. It is reasonable that
the receiver noise n(f) is white. Also a point target in s(¢)
will have a white spectrum. If the radar range resolution is
very high, it could resolve the target into several dependent
scatterers and the target signal could be correlated. Also any
remaining clutter [part of e(z)] could be correlated for high
radar resolution.

A fourth assumption to consider is that the number of
estimation data should be large. For a 1D filter in fast-time
as our TSI filter, the problem is not as large. In a simple
simulation our theory gave an error in the theoretical SINR
of about 3dB for N=n, 0.7dB for N=2n, 0.5dB for
N=3n and 0.3 dB for N=4n.

Yet another assumption is that the bias in the estimated
coefficients of the reflection system should be zero in (23),
(28) and (29). In Section 3.3.1 we saw that the bias can be
zero according to the theory but in the simulations it was
not zero. Despite that, our theory for TSI power and SINR
agrees with our simulations. The theory is robust to this
assumption.

Our expressions for SINR work even if there is a target
signal in the estimation data. A target is not allowed to be
present [31] for the SINR loss expression in [11].

10
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A derivation of the TSI power and SINR for the multiple
beam structure would be more complicated than for a single
beam. However, it is probable that the TSI power and SINR
for multiple beams should qualitatively behave as the ones
for a single beam. The interpretation of Il#]* in our TSI
power and SINR expressions must be changed since for
multiple beams, & are the coefficients of the true system
HyiA(q) in (2). For the multiple beam structure, (40) tells us
that the number of delays need not always be the same in
the estimated reflection system and in the true system for
good suppression.

7 Conclusions

7.1 Conclusions for the reflection system
(Section 2 and 3)

We have presented a new way to view auxiliary beam TSI
suppression, centred around the reflection system.

We have put the single beam and multiple beam structures of
the auxiliary beam TSI suppression in a common framework.

We see that the reflection system is the same as the usual
adaptive filter weights in the well-known SMI SLC of
adaptive beamforming and STAP. Our matrix Ry is the
sample matrix estimate of the ubiquitous interference
covariance matrix. Thus, our results apply also to this usual
filter [except (28)].

We present theoretical expressions of the quality (bias and
variance) of the estimate of the reflection system and see how
some factors influence the quality. The variance expressions
are needed when we derive the performance of the radar
system.

We have also discussed several other aspects on using
auxiliary beam TSI suppression, like only modelling the
most important scatterers and estimating with different
kinds of noise.

7.2 Conclusions for radar performance
(Section 4-6)

We have studied radar performance for the single auxiliary
beam TSI suppression structure. Our main results are
theoretical expressions for remaining TSI power and SINR
after suppression filtering, (32), (34), (35), (37)—(39). Since
the SINR is directly connected to the radar performance,
with these expressions, it is possible to see what factors
affect the performance and how they do it. Among others
we note that ideally the TSI suppression should be able to
keep the SINR constant regardless of jammer power. The
TSI power and SINR should also in the multiple auxiliary
beam structure qualitatively behave as our theoretical
expressions.

In all simulations (single auxiliary beam) where the
estimated reflection system has all the delays of the true
system the theory agrees very well with the simulations,
which are considered the truth. However, when the
estimated system is missing one or more delays of the true
system, the TSI filter cannot suppress the TSI signal with
these delay(s) and TSI power will slip into the main radar
channel. This phenomenon, which we call ‘TSI leakage’,
has a very large impact on the performance. The SINR
cannot be kept constant. We instead can define an ‘SINR
improvement’. Since, in the multiple auxiliary beam
structure, spatial and temporal DoF can in some extent be
traded against each other, this paragraph is not expected to
be valid for multiple beams.
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9 Appendix: Derivation of theoretical TSI
power

We will derive equation (32) for the power of the remaining
TSI signal in the main channel after suppression. We start
without noise v(¢) in the auxiliary channel.

We assume the number of estimated system coefficients is
the same as the number of true coefficients (=n) and the
delays are the same in the estimated and the true systems.
The TSI power in the main channel after suppression is

P._; = Power{r(t) — #(t)}
1 n—1 :

= E) 2 (e =) = (1) + s(w)ld(t = v)|

=0 v=0

n—1 n—1

=YY E(F(@h)d*(t — Dd(t — v)lh}

=0 v=0

n—1 n—1

= > E(h*(DhO) + s@)]d*(t — Dd(t — v)|h}

=0 v=0

n—1 n—1

= > Y E{h(D) + & (D]hw)d*(t — Dd(t — v)|h}

=0 v=0

n—1 n—1

+ ) D CE{(D) + £ (D) + e(v)]

=0 v=0

x d*(t — d(t — v)|h} @1

When all terms of the type [A(v) + &(v)] are split into double
sums of themselves, we obtain nine double sums from (41).
If we assume d(¢) is uncorrelated with /(¢) and &(¢), then

E{[7*(7) + e"(D][h(v) + eW)]d"(t — D)d(t — v)|h}
= E{[A"(7) + " (DI[h(v) + e()]|I}
x B{d*(t — D)d(t — v)|h}

and the same for similar terms in (41).

If we assume d(¢) is white in time, only terms in the double
sums in (41) with t=v will survive and the double sums
become single sums. We also assume d(f) is stationary
and  independent of h.  Then, the  factors
E{d*(t — Dd(t — D)k} = E{|d(®)]*} = P, in (41), where P,
is the jammer power during TSI suppression filtering.

Since A(t) and &(¢) are uncorrelated

E{[h"(7) + " (DI[A(7) + e(D)lh} = E{h*(D)h(7)|h}
+E{ (ne(n)lh} + E{e"(Dh(1)|h} + E{e" (1)e(7)|h}

= E{|h(n)P|h} + 0 + 0 + E{|e(n)|* |1}
and the same for similar terms in (41).
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Now remains from (41)
n—1 n—1
P,y =P,y E{h(DI’|h} — P,y E{|h(7)] |k}
=0 =0
n—1 n—1
— Py Y E{A(P IR} + P, Y E{h(D)I |k}
=0 =0

n—1
+P; ) E{le(n)P |k}

=0

n—1
=P, E{le(n)] |k} (42)
=0

Using (31), (42) and the trace operator we arrive at
n—1

P,y =Py Vih(n} =P Tr{Py} 43)
=0

where Py is the covariance matrix of h.
Now we turn to the somewhat more complicated case with
noise v(¢) in the auxiliary channel.

P,_, = Power{r(t) — (1)}

n—1 n—1
= E{ > h(Dd(t — 1) = Y [h) + £()]
=0 v=0
2
x [d(t —v) + vt — )] |h} (44)
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While we in (41) only had 9 double sums, we in (44) have 25.

If we assume that v(¢) is a white stationary process in time
and that d(¢) and A(¢) are uncorrelated with v(z) and use that
h(t) and e(t) are uncorrelated, we can see that the new
double sums also become single sums and that most of the
new sums will be zero. The only new non-zero sums of
P._; are

r—r

n—1

D E{ADPIRYE{ v — 1)}
=0

n—1

+ Y E{le(mIRE{ Wt — 7|k} (45)
=0

The factors E{|v(t — 7)]*|h} = E{|w(®)]*|h} = P, are the
power of noise w(t) during TSI suppression. Using
E{|i(D)*|h} = |h(7)]* and (31) the new terms in (45) will be

n—1 n—1
Py WD + P,y Vih(n)} (46)
=0 =0

By adding the new terms in (46) to (43) and using ||k =
Z’:;é |h(7)|* and the trace operator we finally arrive at

n—1 n—1
Py =(Py+P) Y Vih®}+P, Y Ih7)
=0 =0
= (Py+ P)Tr{Py} + P,||k|’

which is (32).
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We have designed an experiment for low-cost indoor measurements of rank and other properties of direct and scattered signals
with radar interference suppression in mind. The signal rank is important also in many other applications, for example, DOA
(Direction of Arrival) estimation, estimation of the number of and location of transmitters in electronic warfare, and increasing the
capacity in wireless communications. In real radar applications, such measurements can be very expensive, for example, involving
airborne radars with array antennas. We have performed the measurements in an anechoic chamber with several transmitters,
a receiving array antenna, and a moving reflector. Our experiment takes several aspects into account: transmitted signals with
different correlation, decorrelation of the signals during the acquisition interval, covariance matrix estimation, noise eigenvalue
spread, calibration, near-field compensation, scattering in a rough surface, and good control of the influencing factors. With our
measurements we have observed rank, DOA spectrum, and eigenpatterns of direct and scattered signals. The agreement of our
measured properties with theoretic and simulated results in the literature shows that our experiment is realistic and sound. The

detailed description of our experiment could serve as help for conducting other well-controlled experiments.

1. Introduction

In this article we have designed an experiment for low-cost
indoor measurements of rank and other properties of direct
and scattered signals with radar applications in mind. In real
radar applications, such measurements can be very expensive,
for example, involving airborne radars with array antennas.

In this introductory section we first in Section 1.1 define
the signal rank and mention some other signal properties.
Then in Section 1.2 we present radar applications and other
applications where the signal rank is important. Section 1.3
tells what we have done in this article and gives an outline of
the rest of the article.

L1. Signal Rank and Other Signal Properties. In many appli-
cations of array antennas the covariance matrix R = E{xx"}
of the received signal vector x is utilized. The vector x usually
contains the signals from the antenna channels and possibly

some temporal dimension. The vector can be called a space
(or space-only) snapshot or space-time snapshot, respectively.
The rank of the covariance matrix for the case with
X containing only external signals and without the white
receiver noise is important in radar applications and in many
other applications (see Section 1.2). It states how many, in
some sense, independent signals impinge on the antenna. We
talk about the signal rank, which is the rank of this covariance
matrix.
As R usually is unknown, it must be estimated in the
algorithms that use it. A common estimate is [1, 2]
NR

1

Ro L
NRn:I

H
%%, M
where x,, are training snapshots and Ny, is the number of such

snapshots. These training snapshots must be selected wisely,
depending on the application, and their acquisition will take



some time, the acquisition interval. The acquisition of the
training data and the estimation of the covariance matrix
influence the rank.

Other signal properties than the rank which we consider
in this article are the DOA (Direction of Arrival) spectrum
and eigenpatterns. The DOA spectrum shows the distribution
of received power from different DOAs. Eigenpatterns are
formed by using the eigenvectors of R as beamforming
weights when plotting the antenna array factor. See Sec-
tion 3.5 for more details.

1.2. Applications. In interference suppression in radar, the
rank of direct and scattered signals is important. Such inter-
ference can be direct path jamming (signals from a jammer
travelling one-way line-of-sight to the radar), clutter (signals
from the radar transmitter travelling to a surface, where they
are undesirably scattered back to the radar, also called cold
clutter), and hot clutter (signals travelling one-way from a
jammer to the radar, not directly but scattered on a surface).
The received radar signal in a pulse-Doppler radar can be
stored in a radar data cube with dimensions for antenna
channels (space), pulses (slow-time), and range bins (fast-
time). Suppression of interference is commonly performed
with linear filters, which can be one-dimensional, two-
dimensional, or three-dimensional. For suppression of direct
path jamming, space-only snapshots are usually employed,
for cold clutter usually space-slow-time and for hot clutter
usually space-fast-time.

The output of the suppression filter is y = waHx, where x is
a received snapshot. The filter weights are usually computed
as [3-5]

Wa = Mqu71w0’ (2)

where p is a scalar and R, is the covariance matrix of
the interference plus (receiver) noise signal vector x,. The
vector w, contains the weights without adaptation. It is
usually the steering vector towards the target, possibly with
tapering to reduce the sidelobes [5]. The use of filter (2) is
commonly called adaptive beamforming for space-only snap-
shots or STAP (Space-Time Adaptive Processing) for space-
time snapshots (this is also called optimal beamforming and
optimal STAP if Ryq is known and adaptive beamforming
and adaptive STAP if R, is estimated). The interference rank
determines the needed DoFs (degrees of freedom = number
of filter coefficients minus one) of the filter and the needed
number of training snapshots (see, e.g., [4]). The DoF should
be at least as many as the rank. There are many proposed
methods, called reduced rank methods, for the suppression,
with the DoFs adapted to the rank; for example, see [4, 6, 7].

Clutter in bistatic radar (the transmitter and receiver
geographically separated) is similar to the case of hot clutter
in normal (monostatic) radar. It has been suggested that also
bistatic clutter should be suppressed by STAP [8]. Many high
resolution DOA, Doppler, and range estimation methods in
radar also need to know the signal rank.

In applications other than radar, the signal rank is also
needed. In Electronic Support Measures (ESM), a kind of ele-
ctronic warfare, the objective is to learn as much as pos-
sible about noncooperative radar and radio transmitters.
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Among other things, it is desired to estimate the number
and location of the transmitters. This information can be
used as information only or as a help for jamming. Some
methods for estimating the number of emitters and their
location need the signal rank. In wireless communication it is
suggested to use adaptive beamforming and DOA estimation
methods for interuser interference suppression and signal
separation [1]. For estimating multipath channel models in
wireless communication, DOA estimation can be used [9].
For adaptive beamforming and DOA estimation the signal
rank is often needed. In MIMO (Multiple Input Multiple
Output) communications, the signal rank is directly related
to the transmission capacity.

1.3. Description of Work and Outline of Article. This article
describes how we have designed and executed low-cost
indoor measurements of direct and scattered signals. Direct
signals travel one-way in line-of-sight from transmitter
antenna to receiver antenna. Scattered signals do not travel
in line-of-sight but are scattered on a surface on the way. We
have performed the measurements in an anechoic chamber
with an experimental array antenna where the received sig-
nals arrived directly from the transmitter(s) (direct signals) or
were scattered on a moving rough surface reflector (scattered
signals). Our experiment takes several aspects into account:
transmitted signals with different correlation, decorrelation
of the signals during the acquisition interval, covariance
matrix estimation, noise eigenvalue spread, calibration, near-
field compensation, and scattering on a rough surface. An
advantage of indoor measurements in an anechoic chamber
compared to outdoor measurements is the good control of
the influencing factors, which is necessary to draw objective
conclusions.

The main result of this paper is the design of the exper-
iment for characterization of signal properties of direct and
scattered signals. Also our measured signal properties could
be seen as results. They agree with theoretic and simulated
results in the literature. We have not seen such measured
results but they should exist.

In [10], how the space-only rank of direct path signals
was dependent on several factors for our experimental array
antenna was studied. Also, noise properties were studied.
Part of the material in this paper has earlier been published

n [11] but the current article contains more details and a
significantly deeper analysis.

In Section 2 we will discuss the relation between rank and
eigenvalues and also motivate why we can measure space-
time rank with space-only snapshots. Then in Section 3 the
experimental setup is described and Section 4 gives some
measurement results. A discussion is carried out in Section 5
and, finally, conclusions are presented in Section 6.

2. Some Preliminaries

What now follows is a discussion of some topics that are
needed for and which motivate the article.

2.1. Rank and Eigenvalues. The rank of a covariance matrix
is equal to the number of eigenvalues larger than zero.
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FIGURE 1: Noise eigenspectrum in measurement CIW (one transmitter and reflector; see Table 1). (b) With spatial calibration using a
decoupling matrix and (a) without calibration. dB scale. See Section 3.3 for “SM.” See Section 3.5 for an explanation of the figure.

However, what matters for interference suppression [4] and
number of sources and DOA estimation [1] is the number of
eigenvalues larger than the white noise power. This number
is called the effective rank [4]. Theoretically, for a known
covariance matrix and for white noise as the only signal, all
eigenvalues will be equal and also equal to the noise power.
This level is called the noise floor. Thus, the effective rank
is the number of eigenvalues larger than the noise floor.
These eigenvalues are caused by external signals, like targets,
clutter, jammers, or radio transmitters and are called signal or
interference eigenvalues. The smaller eigenvalues are caused
by the receiver noise and are called noise eigenvalues.

In reality the noise eigenvalues will not be equal. There are
two reasons. First, the estimated eigenvalues will be different,
even if the true covariance matrix has equal eigenvalues,
because of estimation errors [4, 10]. If these incorrectly
estimated noise eigenvalues are used in the optimal filter (2),
the performance will be degraded [4]. Two possible solutions
are to set the noise eigenvalues to their correct value (by
calibration or appropriate estimation [12]) or to use diagonal
loading [4]. When setting the correct noise eigenvalue, the
number of signals/interference eigenvalues must be known.

The second reason for different noise eigenvalues is that
the true eigenvalues really are different due to system nonide-
alities, like unequal noise power in the channels or correlation
between the channels, or due to the used calibration, for
example, with a decoupling matrix (Figure 1 and Section 3.2).
These true unequal noise eigenvalues should not be made
equal since the optimal filter (2) needs the true covariance
matrix, including true unequal noise eigenvalues.

To determine the number of signals/interference eigen-
values (of direct and scattered signals) we compute in this

article a threshold A, as the maximum eigenvalue of a
measured and estimated noise-only covariance matrix, nor-
malized with the minimum eigenvalue. The threshold then
includes the effects due to finite number of snapshots and
to nonidealities of the system like unequal and correlated
channel noise. The eigenvalues below the threshold are
caused by the system (noise and nonidealities) and weak
signal/interference eigenvalues. The eigenvalues above the
threshold will then, hopefully, only be caused by the external
signal/interference sources. Eigenvalues above the threshold
will be called large eigenvalues.

2.2. Hot Clutter and Space-Only Data. Hot clutter suppres-
sion is an important use of our results. Therefore we here
explain why our space-only measurements of direct and
scattered signals are relevant for hot clutter.

The theoretic results in [14] about the estimated space-
fast-time hot clutter covariance matrix indicate that the rank
of this matrix can be measured by the space-only covariance
matrix, if the number of scatterers seen by the receiver is less
than the size of the space-only snapshot (which is the case
in our measurements since in all experiments the number of
large eigenvalues, max 10, is less than the size of the snapshot,
12; see Table 2). Fast-time effects, like jammer and system
bandwidth and time-delay to the scatterers, are included in
the theoretic model and affect the space-only rank through
varying decorrelation of the signals from different scatterers.
What determine the rank of space-only or space-fast-time
signals are the scatterers and not the number of used samples
in space or fast-time. Note that the results in [14] are valid
for the estimated covariance matrix (1). This is the covariance
matrix that must be used in the signal processing. This is also



the one which is used in the analysis of our measurements.
With an estimated covariance matrix the acquisition interval,
during which decorrelation can occur, is inevitable.

In [15] the authors measure channel rank in indoor
wireless communications by the rank of the time-only cova-
riance matrix of the received signal. They say that in nar-
rowband systems the channel rank is equal to the number of
resolvable multipaths for uncorrelated scattering, which with
our terminology is the number of uncorrelated sources. This
confirms that what determine the rank are the scatterers and
not the number of used samples in space or time.

3. Experimental Setup

3.1. The Experimental Array Antenna. The experimental
receiver antenna [10, 16] used in this article was designed
and built by FOI (the Swedish Defence Research Agency).
The high quality antenna has sidelobe levels below —60 dB
[10, 16] and DOA estimation resolution below one-tenth of
the conventional beamwidth [10, 17]. The antenna consists
of a horizontal receiving linear array of 12 antenna elements
with slightly less than half a wavelength separation (45 mm),
12 receiver modules, 12 A/D converters (12bits), and 12
buffer memories. The antenna has an agile frequency band
of 2.8-3.3 GHz and an instantaneous bandwidth of 5 MHz.
The antenna elements are vertically polarized and have a
horizontal 3dB beamwidth of about 115° and a vertical
beamwidth of about 15° [10]. The horizontal beamwidth of the
whole array is about 10°. The receiver modules were manu-
factured by Ericsson Microwave Systems (today Saab Elec-
tronic Defence Systems). From the buffer memories the
signals are transferred to a standard computer, where the IQ-
conversion, DDC (digital downconversion and downsam-
pling with a factor of 4), calibration correction, and spatial
signal processing are performed in nonreal time. See the
hardware block diagrams in [16].

The noise properties of our experimental antenna have
been investigated by Pettersson in [10]. He stated that the
noise sources, without external transmitters, are mainly
internal thermal noise from the receiver modules and exter-
nal thermal noise from the anechoic chamber walls. With
external transmitters, there may be additional noise sources,
like sampling jitter and phase noise of the signal generators.
The true noise power is different in the channels [10] and
it may differ by up to 1.5dB. The noise also has a small
correlation between the channels. The absolute value of the
nondiagonal elements of the noise covariance matrix can be
up to about one-tenth of the diagonal elements [10]. These
two noise properties will give spread of the estimated noise
eigenvalues; see Section 2.1.

3.2. Calibration. Accurate channel equalization (for fre-
quency response) and spatial channel calibration (for mutual
coupling) are utilized [10, 16]. The spatial calibration can be
performed with three different methods [10]
(i) with a DOA correction table on the steering vectors,
(ii) with a decoupling matrix on the steering vectors,

(iii) with a decoupling matrix on the antenna signals x.
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FIGURE 2: Capon DOA spectrum without spatial calibration. Oth-
erwise the same measurement (U2SS, two uncorrelated strong
transmitters; see Table 1) and processing as in Figure 10. See
Section 3.5 for an explanation of the figure.

The fourth potential method, using a DOA correction table
on the antenna signals, is not possible because these signals
do not correspond to a single and known DOA. We prefer
using a correction table on the steering vectors (method (i))
whenever possible. We have not found any drawbacks with
storing such a table instead of only a decoupling matrix,
which is contrary to the opinion in [18].

If in STAP the spatial calibration is performed on the
antenna signals x (by method (iii)), then the same calibration
should be done on the antenna signals x,, utilized for the
estimation of the interference covariance matrix (1). The
reason is to keep the STAP filter (2) optimal, for example,
keeping the filter as a matched filter. However, if the spatial
calibration is applied on the signals, the internal noise will
become more correlated, due to the decoupling matrix [10],
and the spread of the noise eigenvalues will be increased
(Figure 1 and Section 2.1).

Without any spatial calibration the interference suppres-
sion performance will be degraded significantly. See Figure 2
for an example with a Capon DOA spectrum (Section 3.5)
and compare with Figure 10 where spatial calibration is
applied (via a DOA correction table on the steering vectors).
See also [18]. The Capon spectrum is a form of the STAP filter
(2).

3.3. Reflector and Data Acquisition. The measurements were
performed in an anechoic chamber at FOIL Both the array
antenna and the reflector were horizontally oriented (Fig-
ure 3). The reflector, made of a fine-meshed aluminum
net of size 4.0m X 1.5m, was irregularly dented. It was
designed to simulate a rough surface with a Gaussian height
distribution (with a standard deviation somewhat less than
one wavelength) and a Gaussian height correlation function
(with a correlation distance of some wavelengths). This
surface was chosen to obtain a sufficient number of scattering
points from hills and valleys and sufficient roughness to have
more than a wavelength bistatic range variation due to the
surface roughness. We did not aim to model different terrain
types but to achieve multipaths and obtain decorrelation by
movement.
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FiGURE 3: The reflector and the receiver antenna in the anechoic
chamber. Photo from [13].
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FIGURE 4: Top view of transmitter and receiver antennas and the
reflector in the anechoic chamber. The drawing is not to scale.

The reflector was suspended from the ceiling using thin
ropes at a height which gave grazing angles of about 9°.
This grazing angle was just outside of the 3dB elevation
beamwidth (7.57) of the experimental antenna. This geometry
was chosen to have an unobstructed view of the antenna for
the direct path signal and to have a sufficient delay corre-
sponding to about one wavelength to obtain a large phase shift
for the scattered signals. See Figures 4 and 5 for placement of
the equipment in the chamber. The suspension allowed the
reflector to swing easily from one side to the other.

When the reflector was swinging back and forth, with
a deviation of one to two wavelengths, several submeasure-
ments (SMs) were conducted with a delay of 15 s between the
SMs. Each SM contained 256 snapshots (after downconver-
sion and downsampling) and took 40 us to measure. These
snapshots were utilized to estimate a covariance matrix (1).
The used covariance matrix in the analysis (Section 3.5) is
the average of the covariance matrices from the used SMs.
The total time for all SMs was about 3 min for 12 SMs (3072
snapshots), 4 min for 16 SMs (4096 snapshots), and 6 min
for 24 SMs (6144 snapshots). Increasing the number of used
SMs in this study corresponds to increasing the acquisition
interval in [14, 19] (denoted as T in [19]). An acquisition
interval is needed to estimate the covariance matrix (1).
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FIGURE 5: Side view of transmitter and receiver antennas and the
reflector in the anechoic chamber. The drawing is not to scale.

By utilizing several SMs and a swinging reflector we could
simulate decorrelation of the direct and scattered signals. The
movement of the reflector gave a random component in the
phase of the signal. By this the different multipath signals
decorrelated with each other and with the direct signal. The
movement of the reflector also enabled us to measure an
“average” reflector instead of a particular one by using the
same reflector at different positions.

The use of the reflector was not meant to replicate the
exact generation of cold or hot clutter or any other signal/
interference. In applications the decorrelation can occur due
to movement of transmitter and receiver, nonzero bandwidth,
and so forth (see above and Section 5).

3.4. Transmitters. We used one or two transmitter antennas,
which were positioned at about the same height as the
receiver antenna. The transmitter antenna 1 was located at the
broadside of the receiver antenna and antenna 2 was shifted
in DOA (Direction of Arrival) by 15°, which is 1.5 beamwidths
of the receiver antenna; see Figure 4. Transmitter antenna
1 was a rectangular standard gain horn with a horizontal
3 dB beamwidth of 30°. The second transmitter antenna was a
conical ridge horn. The receiver antenna was directed towards
transmitter antenna 1, which had DOA 0° seen from the
receiver antenna array center.

The distance between the transmitter antenna 1 and the
receiver antennas was 6.0 m, which is on the limit to be
considered a far-field distance for one antenna element.
Near-field corrections in the receiver antenna were therefore
applied [10, 16]. The far-field (Fraunhofer) region for the
receiving antenna is beyond 5 m [20], and the radiating near-
field (Fresnel) region is between 0.7 and 5 m. This means that
the reflector is in the Fresnel region with almost three times
the distance from the reactive near-field. We can therefore
assume that there is no coupling between the antenna and
the reflector and that the reflector will not influence the
receiving antenna properties. By this we conclude that the
antenna setup will not influence the decorrelation properties
investigated in the article.

One or two commercially available signal generators were
used for the transmitters. The transmitted waveforms were
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pure sinusoids, that is, the carrier signal without modulation.
Measurements were conducted with coherent, intermediate
correlated, and uncorrelated transmitted signals (Figure 6).
The coherent signals originated from the same signal gener-
ator which fed both antennas. The uncorrelated signals were
generated by two signal generators with different frequencies.
The frequencies were selected so that integer numbers of
periods of the sinusoid signal of each transmitter (after
downconversion and downsampling) were received during
the data acquisition interval. The two transmitted signals then
seemed uncorrelated over this interval. This matter is treated
in [10]. We believe that the accuracy of the frequencies of the
transmitters and the internal oscillators of the receivers was
sufficiently good to give sufficiently low correlation between
the signals which should be “uncorrelated.” Completely
uncorrelated signals are not necessary. Even if the signals
are somewhat correlated, the same qualitative behavior is
achieved regarding the eigenanalysis [21]. A similar condition
for space uncorrelation was noted in [19]. The intermediate
correlated signals were generated by two signal generators
with the same frequency. The two signal generators were in
all cases phase-locked with a 10 MHz signal. The intermediate
correlated signals should therefore be close to coherent. The
used frequencies for the transmitters were 2999.596875 MHz
and 2999.193750 MHz. These frequencies fulfill the require-
ments described above.

Table 1 lists important measurement parameters of our
measurements. The two transmitters were selected to be
either nearly equal in strength or very different in strength.
This later case could imitate a situation with a weak target
signal and a strong jammer. The difference in power, 45 dB,
was chosen so that the power of the weak transmitter would
be similar to the power of the reflections from the stronger
transmitter.

3.5. Methods of Reflection Analysis. Our first analysis type
employed to describe the direct and scattered signals is the
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TABLE 1: Parameters of the measurements.

PG* PG*

Name tI;Ial:)rsanietrt:rfs Correlation  Tx1°  Tx2° S[I(\iIlI;]C
[dB] [dB]
C1S 1 — 0.5 — 41
C28S 2 Coherent 0.5 —4.2 45
U2Ss 2 Uncorrelated 0.5 —4.5 40, 32
1288 2 Intermediate  High  High 42
CIW 1 — -39.5 — 14
C2SW 2 Coherent 0.5 —44.2 43
U2swW 2 Uncorrelated 0.5 —44.5 44,-3

PG is the effective isotropic radiated power [dBm].

>The DOA was 0° for transmitter 1 (Tx 1) and —15° for transmitter 2 (Tx 2).
“The SNR is for one antenna channel (mean value between the channels) and
one time sample after IQ, DDC, and calibration and is estimated from data
(by the frequency spectrum, not the Capon spectrum). For measurements
C2SS, 12SS, and C2SW the stated SNR is for the sum of the two transmitters.
The reason for this is that the transmitters could not be separated in the SNR
estimation.

TABLE 2: Summary of eigenspectra results®.

Name Figure 1SM  Increase per SMb 12 SMs 24 SMs
CIS Figure 8 1 1 8 8
C2SS  Figure 9 1 <1 7 8
U2sS  Figure 10 Szl((‘;i:",&ﬁs\% 10 10
12SS Figure 11 2 <1 9 10
CIW  Figure 12 1 0 1 1
C2SW  Figure 13 1 <1 8 8
U2SW  Figure 14 1 8

“The table gives the number of large eigenvalues, that is, eigenvalues larger
than the threshold A . Often the last large eigenvalue came later than the rest.
bApproximate values.

Capon DOA spectrum [22] (also called MVDR, Minimum
Variance Distortionless Ratio),

1

P (6) = T——a
al (O)R a(0)

capon

3)

where a(0) is the spatial steering vector and Ris the estimated
covariance matrix in (1). The steering vector is a model of
how the receiver perceives an impinging signal from direction
6. For us a(0) was measured in the anechoic chamber and
tabulated for -80° < 6 < 80" with a step of 0.5°. For
angles 6 between the ones in the table the vector a(0) was
interpolated linearly. The calibration correction for antenna
element coupling, amplitude and phase drift, and near-field
were all done on the steering vectors. This is method (i) in
Section 3.2 (DOA correction table on the steering vectors).
See [10, 16] for more information.

The Capon spectrum shows the distribution of received
power from different DOAs unless the signals are coherent.
The Capon spectrum also gives an indication of how well
optimal beamforming and STAP can suppress scattered
signals, since it is computed according to (2), with special
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FIGURE 7: Capon DOA spectra with the reflector (measurement CIS in Table 1, same result as Figure 8) and without the reflector plotted on
top of each other. The region between the left and right vertical dashed lines is the reflection region, that is, where reflections are possible
because of the presence of the reflector. The middle dashed line(s) is the true DOA of the direct signal(s). 24 SMs.

choices of the covariance matrix and the scalar y. For the
Capon spectra, 24 SMs were used. As an example of the
influence of the reflector, Figure 7 shows the Capon spectra
for experiments with and without the reflector.

The second analysis type is the eigenspectrum, which is the
eigenvalues of the antenna signal covariance matrix, usually
sorted in decreasing order. We have plotted the eigenvalues
in an uncommon manner. They are not plotted in decreas-
ing order for a single covariance matrix but all eigenvalues for
the same covariance matrix are plotted in the same “column.”
The different columns are used for covariance matrices with
different number of SMs. We have computed the eigenvalues
for an increasing number of used SMs, up to a maximum
of 24. However, in the graphs in this article only up to 16 SMs
are plotted, due to space limitations. See Figure 8(b) for an
example. The eigenspectrum illustrates the signal/interfer-
ence rank. In each presentation we have normalized the
eigenvalues to the smallest one. No spatial calibration was
performed for the eigenspectra results (except as an illus-
tration in Figure 1). For interference suppression this is not
necessary, since when computing the optimal weights in (2),
the calibration can and should be performed on the quiescent
weight vector w,, (method (i) in Section 3.2) instead of the
covariance matrix (via a decoupling matrix on the received
signals used to estimate the covariance matrix, method (iii)).
Done differently, the noise eigenvalue spread would increase
(Figure 1) and the noise eigenvectors would influence the
optimal filter (2) more and perhaps require more DoFs.
In this paper we determine the interference rank by the
threshold described in Section 2.1. In the graphs the threshold
is marked by the symbol “x”; see Figure 8.

We also present eigenpatterns (eigenvector antenna array
factors) [23]. Eigenpatterns are formed by using the eigen-
vectors of the antenna signal covariance matrix as beam-
forming weights when plotting the antenna array factor.
Since the element pattern is not included in the steering
vector, our eigenpatterns will not be antenna patterns. For
the eigenpatterns the spatial calibration was performed using
a decoupling matrix on the training signals (method (iii)
in Section 3.2). See [10, 16] for more information. Since the

reflector is not placed in the extreme near-field and the eigen-
patterns are transformed to the far-field (by near-field com-
pensation on the training signals and by the used far-field
steering vector), there should be no significant differences in
the eigenpatterns compared to the case where the reflector is
in the far-field.

4. Measurement Results

4.1. Capon DOA Spectra and Eigenspectra. The Capon DOA
spectrum and the eigenspectrum for measurement CIS (a
single, strong transmitter; see Table 1) are shown in Figure 8.
A clear peak at DOA 0° is seen in Figure 8(a). This is the
direction of the transmitter. The peak contains both the direct
signal and the specular reflection. In the figure the extension
of the reflector is given by dashed vertical lines. As seen
in the figure, most reflections from the reflector are about
60 dB lower than the peak. We see that the whole reflector
is covered by the power from the transmitting antennas. In
Figure 8(b), the number of large eigenvalues, that is, above
the threshold (Section 2.1), starts with one and increases by
one for each new SM, except for the last large eigenvalue, up
to a maximum of eight. This means that we can consider the
signal/interference rank to be about one to eight, depending
on the level of decorrelation, of which the direct signal is one.
Table 2 summarizes all eigenspectra.

Figure 9 presents results from measurement C2SS (two
strong coherent transmitters). Here, the Capon spectrum
peak for DOA 0° is considerably lower, 30dB, than in
Figure 8. The second direct signal peak is also weak and has
some bias in DOA. Most parts of the reflection region are
weaker than in Figure 8. The probable reason for the low
levels is the mutual cancellation of the signals from the two
transmitters due to the coherence between them [21, 24]. The
eigenspectrum is similar to Figure 8. This similarity means
that two coherent transmitters are seen as a single transmitter.
The largest eigenvalue in Figure 9 has nearly the same size as
in Figure 8, despite the largest peak being lower in Figure 9
than in Figure 8. This is possible since the eigenvalues do not
correspond directly to the power of the signal sources but the
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FIGURE 8: Measurement CIS. A single strong transmitter. (a) Capon DOA spectrum. Figure description in Figure 7. (b) Eigenspectrum.

Zoom-in to the right. dB scale. See Section 3.3 for “SM.”

sum of the signal eigenvalues A; is equal to the sum of the
signal powers P, [21]:

4)

L L
dYh=YAk
=1 =1

where L is the number of signal sources.

The case with two strong uncorrelated transmitters (mea-
surement U2SS) is depicted in Figure 10. Both direct signals
(including specular reflections) are clearly seen. Also the
reflection region is clearly visible. When studying the eigen-
spectrum, we note a difference to the previous measurements.
Here it starts with two large eigenvalues for the first SMs
and initially increases by two for each new SM (up to six).
Then it increases slower, probably because some eigenvalues
are below the noise floor, up to ten large eigenvalues on the
remaining SMs.

Figure 11 shows Capon spectrum and eigenspectrum for
the case with two strong and intermediate correlated trans-
mitters (measurement I12SS). The Capon spectrum seems to
be nearly identical with the case of uncorrelated transmitters
(compare Figures 10 and 11). The eigenspectrum starts with
two large eigenvalues and then increases by only one for each
extra SM, except for no change between 3 and 4 SMs. The
maximum number of large eigenvalues is ten as for uncorre-
lated transmitters (U2SS) but the final large eigenvalues
require more SMs and therefore more decorrelation than for
uncorrelated transmitters. The more uncorrelated the trans-
mitters are, the more equal in size the eigenvalues are in the
simulations in [19, 21]. In measurement I2SS the transmitters
were more correlated than in U2SS. The eigenvalues were
probably therefore more unequal and some were too small
to cross the threshold and become “large” ones. Thus, the
signal/interference rank increases as the correlation between
the transmitters decreases.
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In Figure 11, we observed that there are two large eigen-
values for a single SM. By changing the analysis to use only 1
SM in 16 repetitions, we obtained two large eigenvalues in 13
repetitions, we obtained one large eigenvalue in 1 repetition,
and we obtained three large eigenvalues in 2 repetitions. This
shows that with a high probability there will be two large
eigenvalues for 1 SM.

We now turn to the case with a single weak transmitter
(measurement CIW). The Capon spectrum (Figure 12) tells
us that the peak is 40 dB lower than in Figure 8, which is as
expected since the transmitted power was this much lower.
The reflection region is not seen at all. The explanation is
that the scattered signals are weaker than the noise. The
eigenspectrum in Figure 12 contains the same information.
It has only one large eigenvalue for all SMs, because of the
weak transmitter. All but one eigenvalue are below the noise.
See also the discussion about the iceberg effect in Section 5.

The Capon DOA spectrum in Figure 13 for two coher-
ent and different strong transmitters (measurement C2SW)

resembles the one for a single strong transmitter (Figure 8)
very much. Also the eigenspectra (Figure 13(b)) are fairly
similar for few SMs (compare Figures 8(b) and 13(b)). For up
to 6 SMs, the number of large eigenvalues increases by one for
each SM as in Figure 8 but the 7th large eigenvalue does not
show up until SM 11 for C2SW. The probable reason for the
similarity is that the weak transmitter is too weak to disturb
the strong transmitter.

In measurement U2SW (two uncorrelated transmitters
with different strength) the Capon DOA spectrum (Figure 14)
is also rather similar to the one with a single strong transmit-
ter (Figure 8). The direct signal is about 3 dB lower and the
valleys of the reflection region are deeper. Interestingly, the
eigenspectrum (Figure 14) starts with two large eigenvalues,
which indicates two noncoherent transmitters despite the
low power of the weak transmitter, below the noise (SNR =
-3 dB). This is also possible because of (4). Then the number
of large eigenvalues increases by one for each additional SM,
which could indicate a single transmitter. It ends with eight
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large eigenvalues as for a single strong transmitter. There
are probably several signal/interference eigenvalues below the
noise.

4.2. Eigenpatterns. Figures 15 and 16 give some examples
of eigenpatterns. More eigenpatterns can be found in [13]
according to Table 3. We notice that each eigenpattern has
one or more large lobes. When the peak of the highest lobe
is within the reflection region (where the reflector can give
scattered signals, denoted with the outermost dashed vertical
lines), we say that the eigenpattern covers the reflection
region. When the peak is outside this region we say that the
eigenpattern covers the region outside.

In our measurements the eigenpatterns corresponding to
the largest eigenvalues usually cover the reflection region. The
remaining eigenpatterns cover the region outside. The one or
two largest eigenvalues have eigenpatterns which are directed
towards the strong direct signals and the other eigenpatterns
usually have nulls in these directions (Figures 15 and 16).

Actually, the eigenpatterns, associated with the eigenvectors,
must be as “different” as possible since they are orthogonal.

There is approximately the same number of covering
eigenpatterns for 1 SM (“without order”) as for 12 SMs; see
Table 3.

Strangely enough, there is about the same number of
eigenpatterns covering the reflection region for 1 SM as
there are large eigenvalues using all (24) SMs, especially
“without order” (compare Tables 2 and 3). Exceptions are
the measurement CIW which has 7 covering eigenpatterns
(Figure 16) despite only 1 large eigenvalue and U2SS and
I12SS, which have somewhat fewer covering eigenpatterns
than eigenvalues. CIW seems to observe all distinct sources
with its eigenpattern but not with its eigenvalues. Remember
some signal eigenvalues are below the noise floor in the
eigenspectra.

For the weak direct signal in the presence of a strong
direct signal, its eigenpattern has a bias in DOA. Also for
the case with two equal strong coherent transmitters there
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the right. dB scale. See Section 3.3 for “SM.”

TABLE 3: Summary of eigenpattern results®.

Name ‘; (S)i\ﬁb w/losg/rl 5 Figure 12 SMs Figure

C1S 8 8 6.8 in [13] 8 6.9 in [13]
C2SS 8 8 Figure 15 7-8 6.33 in [13]
U2ss 5 7 6.24 in [13] 8 6.25 in [13]
1288 2 6 6.36 in [13] 8 6.37 in [13]
CIwW 7 7 Figure 16 7-8 6.21 in [13]
C2SW 5 7 6.16 in [13] 8 6.17 in [13]
U2SW 8 8 6.28 in [13] 8 6.29 in [13]

“The table gives the number of eigenpatterns covering the reflection region.
by ord” stands for “with order” and means the number of covering
eigenpatterns in an uninterrupted sequence from the first one.

““w/o ord” means “without order” and means the total number of covering

eigenpatterns.

is a bias, although less than for two signals with unequal
strength.

(a)

(b)

Number of used SMs

(a) Capon DOA spectrum. (b) Eigenspectrum. Zoom-in to

4.3. Summary of the Measurement Results. We have from
the measurements obtained results on the rank and other
properties of direct and scattered signals. We see that the
signal/interference rank depends on the number of transmit-
ters, the SNR (Signal to Noise Ratio), the correlation between
the transmitters, and the degree of decorrelation of the
transmitter signals that occurs during the data acquisition.

Without decorrelation, the direct and scattered signals
of a transmitter will all be coherent. If the scattered signals
decorrelate with each other and with the direct signal, the
rank is increased. Two coherent transmitters appear as a
single transmitter regarding the signal/interference rank.
Two strong uncorrelated transmitters give rise to the double
number of sources compared to a single transmitter.

With higher SNR, more eigenvalues of the eigenspectrum
tail will appear above the noise level, and the rank will be
higher.

The eigenpatterns show the reflection region and the
DOAs to the direct signals. The eigenpattern can tell us the
number of signal sources when the signals still are coherent.
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FIGURE 12: Measurement CIW. A single weak transmitter. (a) Capon DOA spectrum. (b) Eigenspectrum. Zoom-in to the right. dB scale. See

Section 3.3 for “SM.”

Alternatively, they can tell us the extent of the reflection
region if the number of signal sources is known.

5. Discussion

5.1 Discussion about the Experimental System. To show the
eigenvalues for an increasing number of used SMs when
the reflector is moving gives the possibility to study the
signal/interference rank for different degrees of decorrela-
tion. In a real case, decorrelation can occur as a result
of platform motion (comparing with [19]), internal clutter
motion, nonzero bandwidth [25],long acquisition interval for
estimating the covariance matrix, carrier frequency changes,
and so forth.

Note that we are studying the estimated covariance matrix
(1), not the true covariance matrix. It is the estimated matrix
which must be used in algorithms. The measured signal
snapshots were space-only snapshots. However, the time

dimension enters via the acquisition interval, during which
decorrelation of the signals can occur (see also Sections
2.2 and 3.3). This will increase the rank. The decorrelation
increases if the acquisition interval is prolonged (more SMs)
as in [14].

The Capon spectrum gives a good picture of the imping-
ing power from the direct and scattered signals if the
transmitters are noncoherent.

The measurement result will be influenced by different
transmitter signals. With a different frequency of the pure
sinusoid, there will be different differences in amplitude and
phase between the scatterers on the reflector. If the frequency
is changed much, the number of scatters will change and
thereby the signal rank will change too, with a higher number
and higher rank with a higher frequency. Now the signal
bandwidth is low and the scatterers on the reflector cannot
be resolved in range (= fast-time). A bandwidth in the order
of 100 MHz would be needed to resolve in range. If the
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FIGURE 13: Measurement C2SW. Two coherent transmitters, one strong and one weak. (a) Capon DOA spectrum. (b) Eigenspectrum. Zoom-

in to the right. dB scale. See Section 3.3 for “SM.”

transmitter signals are different from pure sinusoids, the
emulation of uncorrelated transmitted signals probably had
to be performed in a different way.

The measurement quality was considered before, during,
and after conducting the experiments, for example, with a
written experimental design [26] and estimation of uncer-
tainty in the position measurements of the antennas and the
reflector. See [13] for further information on this.

5.2. More Comparison of the Measurements with the Litera-
ture. 'The literature [19, 21, 27] says that each noncoherent
monochromatic source with a different DOA gives rise to a
large eigenvalue, which is in accordance with our measure-
ments CIS, C2SS, and U2SS.

The more uncorrelated the sources are the more equal
in size the eigenvalues are in the experiments in [19, 21]. In
particular, uncorrelated sources with well separated DOAs
give each an eigenvalue of similar size according to [21]. These
statements are in accordance with our measurements 12SS

and U2SS. In [25] a theoretic expression for the size of the
two eigenvalues of two uncorrelated zero bandwidth signals is
derived. In our measurements U2SS and U2SW the difference
between the two largest eigenvalues for 1 SM was about 6 dB
larger than the prediction of the theory. The discrepancy
could be due to a nonideal measurement system and to a
nonzero bandwidth because of time limited measurements.

The result that the eigenspectrum starts with a single
eigenvalue for (one or two) coherent transmitters for a single
SM (a very short acquisition interval) in our measurements
agrees with the result in [14] showing that the rank will be one
for the case without motion and with zero jammer bandwidth
and for the case with motion of radar and/or jammer, zero
bandwidth, and a “vanishing short” acquisition interval. One
of our results is that the number of large eigenvalues will
increase up to a limit when the number of SMs is increased.
This result is in agreement with the result in [14] showing that
each scatterer will appear as an independent source when the
acquisition interval goes to infinity.
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We noticed by our measurements that the number of large
eigenvalues depends on the signal power in comparison to the
noise floor (compare measurement CI1S in Figure 8 with CIW
in Figure 12 and measurement U2SS with U2SW). The higher
the signal power is, the more the eigenvalues of the spectrum
tail will appear above the noise level. It is like an iceberg lifting
above the ocean surface. This phenomenon is therefore called
the iceberg effect. It is described in [4, 27] and there illustrated
by simulations.

We found that the number of eigenpatterns which cover
the reflection region (by the number of eigenpatterns which
have their highest peak within the reflection region) is nearly
independent of the number of used SMs. To estimate the
number of signals using the eigenvalues we need many SMs
but with the eigenpatterns it is enough with a few. Thus, it
seems like the fact that the eigenpatterns are better for the
estimation of the number of signals than the eigenvalues.
Nevertheless, it is well-known that the number of large eigen-
values determines the required DoFs for interference sup-
pression [4]. In [27] it is noticed, probably from simulations,

that the eigenpatterns corresponding to the signal sources
were “essentially unaffected” by a “modest amount” of inter-
ference subspace leakage, which is in agreement with our
results.

We conclude that our measurement results agree in most
cases with theoretic and simulated results presented in the
literature.

6. Conclusions

We have designed an experiment for low-cost indoor mea-
surements of direct and scattered signals with radar appli-
cations in mind. We have good control of the influencing
factors, which is necessary to draw objective conclusions.
The detailed description of our experiment could serve as a
help for conducting other well-controlled experiments. Our
experimental design has some characteristics:

(i) Emulation of coherent, intermediate correlated, and
uncorrelated signal sources (Section 3.4).
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FIGURE 15: Eigenpatterns for measurement C2SS (two coherent strong transmitters). 1 SM. Dashed vertical lines are the true DOAs of the
transmitter(s) and the nearest left and right corner of the reflector. Figure 6.32 in [13].

(ii) Calibration: when to calibrate and when not and also
how to calibrate in different cases (Sections 3.2 and
3.5).

(iii) Near-field compensation: relation to receiving
antenna properties, decorrelation, and eigenpatterns
(Sections 3.4 and 3.5).

(iv) Noise eigenvalue spread: relation to calibration, hard-
ware quality, and signal rank (Sections 2.1, 3.2, and
3.5).

(v) Emulation of a rough surface by a reflector (Sec-
tion 3.3).

(vi) Decorrelation of the signals by movement of the
reflector (Section 3.3).

(vii) Acquisition interval for the estimation of the covari-
ance matrix and its effects on the rank (Section 3.3).

(viii) Analysis methods: Capon DOA spectrum, eigenspec-
trum, and eigenpatterns (Section 3.5).

Section 4.3 summarizes our measured properties of direct
and scattered signals. The agreement of our measured prop-
erties with theoretic and simulated results presented in the
literature shows that our experimental design is realistic and
sound.
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Abstract - Conformal antennas, which assume the
shape of the platform, have several advantages; like
reduced weight and space, aerodynamic design and
increased field of view. We are interested in detection
of moving ground targets with air-borne radar with
faceted or smooth vertical half-cylinder or planar
antennas with different subarray sizes. We simulate
radar systems and study clutter properties which are
important for suppressing the clutter with STAP
(Space-Time Adaptive Processing), properties by
which we can compare the antennas. We use old
analysis tools and propose some new which are easy
to interpret and draw conclusions from. We find that
the faceted and smooth half-cylinder antennas have
no significant differences in clutter suppression per-
formance. The plane antenna has poorer perfor-
mance. The subarray division is more important
than the antenna geometry. The number of antenna
channels is related to the clutter rank and the clutter
fraction of the signal space.

I. INTRODUCTION
Lately there has been a large interest in sensors
for small platforms like UAVs (Unmanned Aerial
Vehicle) for surveillance and information
acquisition about ground targets, in for example task
forces and on a tactical level [5].

It is desired that the UAV has several functions,
like detection, positioning and identification of
stationary and moving ground targets, tactical
mapping of unknown terrain, seeing and avoiding
other aerial vehicles, communication and in some
cases electronic warfare functions. Probably a
combination of microwave and EO (electro-optical)
systems is needed. These systems have different
advantages and drawbacks. In this paper we only
address microwave systems.

Svante Bj(irklund1

lBlekinge Institute of Technology
1Ronneby, Sweden

The microwave sensing of stationary targets can
be performed by SAR (Synthetic Aperture Radar)
and moving targets by radar with GMTI (Ground
Moving Target Indication) using STAP (Space
Time Adaptive Processing) [7, 18].

In order to save space, weight, costs and energy
consumption the same microwave hardware should
be used for several or all functions, if possible. On
UAVs a conformal array antenna, which assumes
the shape of the platform (Fig. 1 and 2), has several
advantages. It can reduce weight, space and radar
cross section. It has an aerodynamic design and can
increase the field of view and the antenna aperture
size. It also avoids the signal modulation a rotating
antenna would cause.

At FOI an experimental conformal antenna for a
small tactical UAV or an aircraft mounted pod has
been designed, built and evaluated [12, 15], see
Fig. 1. The antenna consists of planar facets on a
vertical half-cylinder. An antenna with facets
instead of a continuously bent antenna aperture is
often easier to manufacture.

This paper contains simulation results of clutter
properties which are important for the employment
of STAP for GMTI in UAV borne radar with faceted
(of the FOI type) and smooth cylindrical conformal
antennas (Fig. 1, 2 and4). The purpose is to
compare different antennas, including their
geometry and subarray division, regarding clutter
suppression. The paper is based on the report [1] and
the conference paper [2]. We have made these
developments compared to [2]: Improved power
calculations, directive transmitter antennas, antenna
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Figure 1. Experimental conformal antenna de-
signed and built by FOI. It has planar facets on a
vertical half-cylinder. Photo from [6].

grFol

Figure 2. The FOI experimental conformal an-
tenna mounted on a UAV. Image from [6].

scanning of transmitter and receiver subarrays and
also new methods for comparison of antenna
geometries and divisions.

STAP with conformal antennas has not been
reported much in the literature. In [8] they model
conformal antennas and compute SINR
performance for an airborne radar against moving
targets with clutter background. A continued work is
reported in [9]. In [8, 9] they used conformal
antennas with other geometries than we do. They
also ignored the influence of the polarization, which
is questionable. We have taken the polarization into
account. Reference [17] is about range dependence
compensation of training data from a partially

calibrated conformal antenna in bistatic radar. A
method for managing clutter range dependence with
conformal arrays is proposed in [10].

II.  SIMULATIONS
The simulation program, written in Matlab,
mainly computes and displays clutter properties,
SINR (Signal to Interference plus Noise Ratio) and
antenna patterns as functions of antenna and
waveform design of the radar, clutter and target
models and positions and velocities.

The scenario is similar to the one in [2], making
comparisons possible. The simulation scenario is
depicted in Fig. 3 with the ground surface, surface
elements, a target and the radar. We let only a
rectangular flat ground surface of size 10 km x
10 km contribute to the clutter in the simulations.
The horizons are not taken into consideration. The
surface is divided into equally large, rectangular
elements (AX,AY)=(50 x 50m). The equal size
compared to the usual division of the surface
elements according to the radar coordinates
(azimuth, elevation and range) has the advantage
that the clutter statistical properties will be the same
for all elements just because they have the same size.

The specific RCS (Radar Cross Section) [m2/m? ]
of the ground is modelled by the (monostatic)
constant gamma model [14] ¢ = ysin®,, where 6, is
the grazing angle and y = -14 dB, applicable to
“open woods” [14, p. 333]. This is a simple but
common model. The radar platform is located above
the center of the ground surface at an altitude of 300
m and is moving with 45 m/s in the global X
direction (Fig. 3).

The radar carrier frequency is 35 GHz. The radar
range resolution is AR =200 m. The number of radar
pulses in a CPI (Coherent Processing Interval) is
M = 16. The PRF is 3.75 kHz, the maximum
unambiguous radial velocity is 8.0 m/s and the
velocity resolution is 1 m/s. The choice of AX, AY,
AR and M is limited by the simulation
computational load. Since the radar unambiguous
range (40 km) is larger than the maximum range for
all ground elements, there will be no range aliasing.
We have simulated several receiver antennas, both
conformal ones (faceted and smooth half-
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Figure 4. Element placement for the faceted (Fpq)
and smooth (Spq) cylindrical antennas and for the
plane (Ppq) antenna. Figure from [2].

cylindrical) and plane ones. We use the plane
antennas for comparison. We have recently
simulated antennas with three different geometries
(placement and orientation of the antenna elements),
Fpq, Spq and Ppq (Fig. 4). The symbols pg denote
the subarray divisions described below.

* Fpq: Faceted antenna on a forward-looking ver-
tical half cylinder (radius 0.15 m) with 14 facets
with 8x8 antenna elements each, totally 896 ele-
ments. Within each facet the elements are sepa-
rated half a wavelength. See Fig. 4.

* Spg: Smooth antenna on a forward-looking verti-
cal half cylinder (radius 0.15 m) with 8 elements
vertically, totally 896 elements. The element

separation is approximately half a wavelength.
See Fig. 4.

* Ppgq: Plane forward-looking antenna with 8 ele-
ments vertically and 64 horizontally, totally 512
elements. The element separation is half a wave-
length. See Fig. 4. The aperture width is 0.27 m,
which is somewhat less than the projection to the
front of the faceted or smooth cylindrical anten-
nas (0.30 m). On the other hand, all elements of
the plane antenna are directed to the front and
will be more effective than most element of the
faceted and smooth antennas when looking to
the front and therefore compensate for the
smaller number of antenna elements and smaller
forward-looking aperture. Looking far to the side
with this antenna will give poorer performance
than with the half-cylinder antennas.

For each of the three antenna geometries
described above four different subarray divisions
are used. All subarrays are non-overlapping and
have 8 vertical elements. The number of horizontal
elements in the subarrays are 8, 4, 2 or 1. This gives
totally 12 receiver antennas with the names F88,
F84, F82, F81, S88, S84, S82, S81, P8S, P84, P82
and P81. The faceted and smooth cylindrical
antennas have 14, 28, 56 or 112 subarrays and
antenna channels. The plane forward-looking
antennas have 8, 16, 32 or 64 subarrays. None of the
subarrays use tapering. Compare with the antennas
in [8].

The receiver subarrays are with all antennas
scanned to one of the 14 azimuth angles [-90 -76 -
62 -48 -35 -21-7 7 21 35 48 62 76 90]
degrees relative the forward direction (the global X
direction in Fig. 3), which also are the normal
directions of the facets of the facetted antenna. The
subarrays are scanned to the elevation -5.7 degrees,
which gives an intersection of the antenna beam
with the ground at 3 km. In [2] the subarrays were
not scanned but had a pointing direction fixed to the
forward direction. By a fix pointing direction we
only get the clutter properties for a radar field of
view within the fix subarray main beam. Our new
simulations are therefore an improvement in this
aspect.



For the transmission, an 8x8 subarray of the
antenna was employed. With the antenna gain 23 dB
a transmitted power of 16 W (0.25 W per element)
is enough for a designed detection range of 5 km for
a target with RCS 2 m2. An isotropic transmitter
antenna, as in [2], would require a mean transmitted
power of 50 kW, which would be unreasonable. For
the facetted and smooth cylindrical antennas, the
subarray in the configuration F88 or S88,
respectively, whose normal direction was closest to
the receiver subarray scanning was used as the
transmitter. For the plane antenna a fix subarray of
the middle 8x8 elements was utilized for the
transmission. In all cases, the transmitter antenna
was scanned to the same direction as the receiver
subarrays. Compared to an isotropic transmitter
antenna the field of view is limited by the transmitter
main beam, see Fig. 5.

The transmitter and receiver antenna elements
have in their forward direction the amplitude pattern
f.(B) = cosB, where B is the angle with the element
normal vector. The pattern is zero in element back
direction. This gives zero clutter power from the
back direction of the transmitter facet in Fig. 5. The
antenna elements are vertically polarized.

For each clutter element and for the target the
RCS, range, viewing angles, antenna gains and
Doppler frequency are computed. The received
clutter and target signal correlation matrices' and
powers are then computed. This is done in a similar
manner as in [13]. The clutter signal from all surface
elements are assumed statistically independent, as in
[13].

III.  SPACE-TIME ADAPTIVE PROCESSING

The adaptive space-slow-time processing which
we are interested in is performed by the following
well-known linear filter. See for example [3, 7, 18].
The output of the filter is y = w/x, where x is a
radar snapshot (the stacked signals from the antenna
channels and radar pulses). The filter weights are
computed according to equation (1)

-
W, = Rgq Wp,

)]

1. Often called covariance matrix in the literature.
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Figure 5. Clutter power at the receiver antenna be-
fore beamforming vs. different surface positions of
the clutter cells. Antenna F84. Scanning to -3s°.

where u is a scalar that can be chosen in different
ways, R, = E{quq” } is the correlation matrix of
the interference Xq (clutter, receiver noise, etc.) and
w, is a constraint vector, which depends on DOA
(Direction of Arrival) and Doppler to investigate
(“the steering vector”). Fully adaptive STAP is
assumed to be used, i.e. all digital antenna channels
and all radar pulses are utilized. However, analog
beamforming to subarrays are employed, giving
fewer antenna channels than antenna elements. The
true space-slow-time correlation matrix is used. It is
not estimated from data, as must be done in reality,
but computed theoretically. This will give optimal
STAP.

IV.  PERFORMANCE MEASURES

We have used several performance measures to
compare different antenna geometries and subarray
divisions.

Fig. 7-12 display interference (clutter plus
receiver noise) DOA Doppler Spectra for some of
the different receiver antennas described above. An
interference  DOA Doppler Spectrum (DDS)
displays the interference power as experienced by
the radar, for a certain range bin (3000 m in this
paper), distributed in DOA and Doppler. It is desired
that the parts of the DOA-Doppler spectrum which
is stronger than the receiver noise occupy as little as
possible of the spectrum. These parts are due to the
clutter. This gives more signal space where targets



can be detected. Close to the strong clutter in the
spectrum we cannot expect to being able to detect
targets. It is also desired that the clutter looks the
same in many neighboring range bins since these
bins usually are used to estimate the clutter
properties, i.e. the correlation matrix Ry The
DOA-Doppler plots in this report were estimated by
the Capon method [4], as in [11], which should give
a true power measure with good resolution. Because
of the scanning of the receiver subarrays and the
transmitter antenna, we have merged 14 (the number
of scanning angles) DDSs for different DOA
subintervals, each with the width of the transmitter
beam, to form a single DDS with DOAs in the whole
interval [-90°, 90°].

We have further processed the interference DOA
Doppler spectrum by sorting all its values in
decreasing order, getting the interference Sorted
DOA Doppler Spectrum (SDDS). See Fig. 13 for an
example. The spectra for different cases, like
different antennas, are then easier to compare. The
sorted spectrum can also be used in quantitative
statements, which is difficult with the unsorted
spectra in Fig. 7-12. Our sorted interference DOA
Doppler spectrum is a similar concept as the “rank-
ordered SINR loss” in [16].

A step further we get the Clutter DOA Doppler
Fraction (CDDF) which we define as the fraction of
the interference DOA Doppler spectrum larger than
3dB above the white noise power. We must set
threshold above the noise level because no values of
the spectrum is below the noise, see Fig. 13. We
assume that only 3dB or more above the noise the
clutter will have any significance. The CDDF is
similar to the “Usable Doppler Space Fraction”
(UDSF) in [18].

Fig. 6 shows the clutter eigenspectrum for some
of the receiver antennas. A clutter eigenspectrum
depicts the eigenvalues of the clutter correlation
matrix Ryq, sorted in descending order. It tells us
how difficult it is to suppress the clutter and how
much radar resources are needed. It is the number of
eigenvalues larger than the receiver noise that
matters for the clutter suppression. This number is
called the “effective rank™ [7]. The effective rank is
related to the number of antenna channels and radar

pulses needed for clutter suppression. It gives an
indication of the computational burden and the
amount of training data needed to estimate the
properties of the interference and compute the
suppression filter. The latter is very important, since
it is usually difficult to acquire enough training data
of high quality. The eigenspectrum is a major
analysis tool for interference suppression in radar.
Also the eigenspectra let us compare different
antenna geometries and subarray divisions. We have
in this paper computed the eigenspectra for the slant
range 3000 m and the receiver subarray and
transmitter antennas were be scanned to -34°.

Also from the eigenspectrum we have taken a
step further and computed the Clutter Rank Fraction
(CRF) which is the fraction of eigenvalues larger
than the white noise power. This quantity, like the
DDS, also measures how much of the signal space
the clutter occupies and therefore how difficult it is
to suppress. Computing the fraction is also a concept
like the CDDF and UDSF.

The new performance measures in this paper
(SDDS, CDDF and CRF) are easier to interpret and
draw conclusions from compared to the ones in [2],
the DDS and eigenspectrum. All performance
measures we have used are independent of the
STAP method.

V.  SIMULATION RESULTS

Fig. 7-12 display interference DOA Doppler
Spectra (DDS) for some of the different receiver
antennas described above. The ambiguity in
Doppler is clearly visible. The plane antenna has
many more strong clutter ridges. Note the
differences to the corresponding DDSs in [2]. The
main reason for the less clutter here and the cleaner
spectrum should be the directive transmitter antenna
and the scanning of the receiver subarrays and the
transmitter antenna. The absolute power levels in
the DDS here and the DDSs in [2] cannot be
compared because the simulations are different.

Table I shows the effective clutter rank, Table II
the clutter rank fraction (CRF) and Table III the
Clutter DOA Doppler Fraction (CDDF) for our 12
antennas. We see that the effective rank decreases
(better) with fewer antenna channels (larger
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subarrays) and the effective rank is about the same
for the faceted and smooth cylindrical antennas
while smaller for the plane antenna (which has fewer
channels). We see that the clutter rank fraction
(CRF) increases (worse) with fewer antenna
channels (larger subarrays). The CRF is about the
same for the faceted and smooth antennas while
larger (worse) for the plane antenna. We see that
clutter DOA Doppler fraction (CDDF) increases
(worse) with fewer antenna channels (larger
subarrays). Again faceted and smooth antennas have
about the same values while the plane antenna has a
higher CDDF (worse). For all antenna types the
CDDF difference is larger between large subarrays
than between small ones. Note also that for the
largest subarrays the CDDF is not worse for the
plane antenna than for the other ones.

Figure 9. Interference DOA Dop-
pler spectrum. Antenna P84.

Slant range 3 km.

Figure 12. Interference DOA
Doppler spectrum. Antenna P88.

Slant range 3 km.
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Figure 6. Clutter eigenspectrum. Comparing an-
tennas F84, S84 and P84. Slant range 3km. Scan

angles -34°.
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TABLE lll.  Clutter DOA Doppler Fraction (CDDF,
fraction of the interference DOA Doppler spectrum
larger than 3dB above the white noise power).

I
‘ Faceted Smooth
I Plane P
‘ Fpq Spq P
pg=81 14 % 15 % 23 %
2 16 % 17 % 29 %
Noise power + 3dB
84 27 % 26 % 45 %
\__Noise power 88 77 % 71 % 75 %
180 I 20 % 0 %0 % 70 % % 100

Figure 13. Interference Sorted DOA Doppler spec-
trum (SDDS). Comparing antennas F84, S84 and
P84. Slant range 3km.

TABLE I.  Effective Clutter Rank (number of
eigenvalues larger than the white noise power).

Fa;gg(tled Snslg:th Plane Ppq

pq=81 169 187 150

82 160 174 142

84 156 162 119

38 133 128 90

TABLE Il.  Clutter Rank Fraction (CRF, fraction of

eigenvalues larger than the white noise power).
Fa;g;(tled Srrslggth Plane Ppq

pg=81 9% 10 % 15 %

) 18 % 19 % 28 %

84 35 % 36 % 47 %

88 60 % 57 % 71 %

VI. FURTHER DISCUSSION

The difference between smooth and faceted
antennas is not expected to be large, provided that

the elements in different facets can be used
simultaneously ~ without  problems. In our
simulations the smooth and facetted antennas have
similar properties.

The antenna elements in a smooth array can be
combined into almost arbitrary sub-arrays, but it
would be difficult to make subarrays of a faceted
array that overlap between facets. This is a reason
for not wusing overlapping subarrays in the
simulations.

From an antenna point of view, the smooth
antenna has an advantage in that all elements but a
few at the outer edges can be considered equal, both
in terms of radiation pattern and in terms of
matching properties. The faceted antenna is on the
other hand easier to manufacture and repair since
each facet can be replaced independent of the other
facets.

Our conformal antennas are able to form good
transmitter and receiver subarray patterns in all
directions between -90° and 90° because there will
always be a part of the antenna aperture nearly
orthogonal to the desired direction. The plane
antenna cannot do this far from broadside. For the
antennas with the small subarrays (1-4 elements
wide) the field of view will be limited by the
transmitter antenna beamwidth.

We believe now that the antennas with the fewest
antenna channels (largest subarrays) are useful for
clutter suppression. This is nearly contrary to the
conclusion in [2]. Our changed opinion is due to our



better analysis tools now. Some other conclusions
are the same as in [2].

VII. CONCLUSIONS

We draw the following conclusions from our
work:

e The faceted and smooth half-cylinder antennas
have no significant differences in clutter suppres-
sion performance. The plane antenna has poorer
performance.

* The subarray division is more important than the
geometry of the antenna.

* The number of antenna channels is related to the
clutter rank and the clutter fraction of the signal
space. With fewer antenna channels a larger per-
centage of the channels is needed for the clutter
suppression but also with fewer channels less
resources (computational and training data) are
needed for the suppression.

* We propose new performance measures (SDDS,
CRF and CDDF), which seem to be easy to
interpret and draw conclusions from.
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Abstract: The effect of the subarray design in a side-looking moving radar with a planar
antenna on some clutter properties which are important for suppressing the clutter with
STAP (Space-Time Adaptive Processing) is investigated by simulations. These properties
are interference DOA Doppler Spectrum (DDS) and clutter rank. The conclusions from
the work is that irregular antennas give less clutter in the DDS and that larger subarrays
give lower clutter rank.

1. Introduction

There are several ways to reduce the number of digital antenna channels of a radar and thereby
reduce cost, space, weight, power consumption etc. The traditional way is to use subarrays
with analog beamforming [1]. Other ways are minimum redundancy arrays [8], co-prime arrays
[10] and MIMO (Multiple Input Multiple Output) arrays [4]. Often it is necessary to suppress
the radar clutter from ground and sea in order to detect and locate targets. STAP (Space-Time
Adaptive Processing) [6] can be used for the suppression. For efficient suppression, knowledge
of clutter properties is needed, e.g. the clutter rank [7]. The clutter rank for antennas with sub-
arrays has been treated in [5, 11].

The problem which we address in this paper
is if and how the antenna subarray design of r/

Rada

amoving radar affects some clutter properties
which are important for suppressing the clut-
ter with STAP. These properties are interfer-
ence DOA Doppler spectrum (DDS) and the

» Radar

Movement

Target

300 m

Ja_,;_

clutter rank, the latter also called clutter de- '/ ey || TR
grees of freedom. An application is "UAVs Surtace

Surface

(Unmanned Aerial Vehicle) for surveillance Efement
and information acquisition about ground tar-
gets, in, for example, task forces and on a tac- Figure 1: Simulation scenario.

tical level." [3], Figure 1. This paper is similar

to [2] but uses a side-looking radar instead of a forward-looking and has a different antenna ge-
ometry and different subarray designs. This paper has been supported by The Swedish Armed
Forces’ R&D program.
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Figure 2: Subarray designs. Top left Q84, top right Q8801, bottom left Q8 A, bottom right Q8R1. The left side of
the antennas is in the forward direction of the UAV.

2. Simulations

We obtain our results by simulations in a scenario with a UAV borne 35 GHz radar for detection
of ground targets (Figure 1 and [3]). The radar, scenario and simulation setup are the same
as in [2] except for the antennas used. Since the performance measures in Section 4. utilize
the space-time covariance matrix of the received radar signals from clutter only or clutter plus
receiver noise, we compute or "simulate" these matrices. The space dimension is the antenna
channels from the subarrays of the antenna. The time dimension is the radar pulses or PRI (Pulse
Repetition Interval). The number of antenna channels is 7 or 8. The true (not estimated) clutter
covariance matrix is used and the receiver noise is white in space and time and has equal power
in all channels.

3. Antennas

The antenna is a planar rectangular array with identical antenna elements positioned in a rectan-
gular grid with equal inter-element distances. The antenna aperture is placed on the left side of
the UAV, with its normal orthogonal to the direction of movement. The antenna has subarrays
only in the horizontal direction. We have used four different subarray designs (see Figure 2):

084: Eight equally sized, non-overlapping, subarrays of width 4 elements. Up to seven times
the same distance between pairs of subarray phase centers (not only neighboring subarrays)
occurs (the first time and six repetitions of the same distance). This quantity is the same as the
maximum of "spatial-frequency sensitivity" in [8].

08801: Seven equally sized, overlapping, subarrays of width 8 elements. Up to six times the
same distance between pairs of subarray phase centers occurs.




mstap361 TotalSpecSwitch Q84 mstap361 TotalSpecSwitch Q8801

1500 1500

1000 1000

o
o
o

500

Doppler [Hz]
Doppler [Hz]

sin(az)
mstap361 TotalSpecSwitch Q8R1

1500 1500

BEEER

1000 1000

500

(s
f=]
o

Doppler [Hz]
Doppler [Hz]

Figure 3: Interference DOA-Doppler spectra. Top left: Q84, top right: Q8801, bottom left: Q8A, bottom right:
Q8R1. Horizontal axis: sin(azimuth angle). Slant range 3000 m.

Q8A: Seven non-overlapping subarrays of different width. The design idea is to emulate the
projection of a vertical half-cylinder antenna aperture to the side. In the forward direction of
the UAV the subarrays get smaller and smaller like the projection of the half-cylinder antenna
to the side direction. At most twice the same distance between pairs of subarray phase centers
occurs.

Q8RI: Eight non-overlapping irregular subarrays. The widths of the subarrays are chosen so
that the distance between the phase centers of pairs of subarrays repeat as few times as possible.
Subarrays are often chosen so in order to reduce grating lobes. In [8], the antenna element
positions are chosen so in order to increase the antenna aperture and its resolution without
decreasing the angle between grating lobes. In our antenna Q8R1 the same phase center distance
only occurs once (no repetition). This is desired in minimum-redundancy arrays [8].

4. Performance measures
We use the same performance measures as in [2], namely:

Interference DOA Doppler Spectrum (DDS), which is the clutter plus receiver noise power as
sensed by the radar from different DOAs (Direction of Arrival) and Dopplers. See Figure 3. To
generate these DDS we have split the view region +90° into a number of smaller DOA regions.
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Figure 4: Interference DOA-Doppler spectra performance measures. Left: Sorted spectrum (SDDS). Right: DOA-
Doppler fraction (DDF).

Each region corresponds to a Tx (transmitter) mainbeam antenna position and Rx (receiver)
subarray antenna position (see [2]). The DDS is only computed in its DOA region, giving a
subDDS. Then the subDDSs are joined together. This means that there is no clutter from side-
lobes or backlobes in our DDS, contrary to what is usual. The whole our DDS is from the
mainbeam of the Rx subarrays and from the Tx antenna. We want the clutter to occupy as little
as possible of the DDS since where there is clutter, we cannot expect to detect targets. Vi have
used the slant range 3000 m in this paper.

Interference Sorted DOA Doppler Spectrum (SDDS), which is the sorted values of the DDS in
decreasing order. Then, different antennas are easier to compare. See Figure 4 left. We want the
SDDS to be low.

Interference DOA Doppler Fraction (DDF), which we define as the fraction of the DDS which
is more than 3dB above the receiver noise power. We assume that only the clutter 3dB above
the noise will be a problem. See Figure 4 right. We want the DDF to be low.

Clutter eigenspectrum, which is the eigenvalues of the clutter covariance matrix sorted in de-
creasing order. See Figure 5 left. This spectrum gives information about how difficult the clutter
is to suppress and and how much radar resources are required. We have in this paper used the
eigenspectra for the single antenna scanning direction 55.4° relative the platform velocity vector
and for slant range 3000 m.

Clutter Effective Rank (ER), which is the number of clutter eigenvalues larger than the receiver
noise power. See Figure 5 right. This measure is very important when using STAP since it tells
us the required radar radar resources and amount of data to estimate the clutter properties [6].
We want the ER to be low.

Clutter Effective Rank Fraction (ERF): The fraction of all eigenvalues which are above the noise
power. See Figure 6. This measure tells us, like the interference DDF how much of the signal
space the clutter occupies and therefore how large a clutter problem it is. We want the ERF low.
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Figure 5: Clutter rank performance measures. Left: Eigenspectrum. Right: Clutter Effective Rank (ER). Slant range
3000 m.

5. Simulation results and discussion

The interference DDS for the four subarray
designs are depicted in Figure 3. The solid mstap514resulti: Effective Rank Fraction, ERF
lines is the clutter ridge. The interference 100
SDDS and DDF are shown in Figure 4. The
clutter eigenspectrum, ER and ERF are dis-
played in Figure 5 and 6.

80
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We see in Figure 4 that the interference DDF
is lower for the antennas with irregular sub-
arrays, Q8A and Q8R1. The DDSs in Fig-
ure 3 are also cleaner compared to the extra
clutter disturbances between the clutter ridges
for the antennas with regular subarrays, Q84 Figure 6: A clutter rank performance measures: Clutter
and Q88o1. The reason for these differences  Effective Rank Fraction (ERF).

could be grating lobes with Q84 and Q8801,

caused by the high repetition of the same distance between phase centers of the subarrays, up
to 7 and 6 times for Q84 and Q8801 compared to max 2 and 1 times for Q8A and Q8R1. These
results also agree with the different results of planar and conformal antennas in [2], where the
"irregular" conformal antennas have better interference DDS and DDF properties.

5 5

We see in Figure 5 and 6 two groups of subarray designs, namely Q84, Q8A and Q8R1 in one
group and Q8801 in the other. The Q8801 gives better clutter rank properties. Q84, Q8A and
Q8R1 have the same clutter ERF. The difference in ER is due to the different number of antenna
channels. We note that Q84, Q8A and QR8RI1 have in average about the same subarray width,
namely 4.0-4.6 element distances. Q8801 has a larger subarray width of 8 element distances. A
probable reason for the lower clutter rank with Q8801 is that the wider subarrays and therefore
their narrower beams receive less clutter in the form of signal from fewer clutter scatterers and



a smaller Doppler spread. We note from our results that the properties of the clutter received by
a radar depend on the radar design. This is in agreement with [9].

6. Conclusions

We

draw the following conclusions from our work:

e Irregularity in the form of irregular subarrays or a non-planar aperture results in less
clutter in the interference DOA Doppler spectrum.

e Larger subarrays give lower clutter rank. The reason is probably the narrower beam in
which the signal of fewer clutter scatterers enter and the Doppler spread is smaller.

e None of the tested subarray designs is the best for all our performance measures. The
irregular subarray designs are better for the DOA Doppler spectrum. The design with
overlapping large subarrays is the best for the clutter rank.
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Abstract—In moving radar, e.g. airborne radar, the clutter
from land and sea needs to be suppressed in order to detect
the target. One approach to total cancellation of the clutter is
Displaced Phase Center Antenna (DPCA). DPCA assumes that
the antenna elements are positioned on a line parallel to the
velocity vector of the radar platform so that the elements can take
each others positions at different points of times. In a previous
paper we saw that it is possible with other antenna element
positions, e.g. in three dimensions, for a total cancellation of the
clutter. We arrived at a theoretical condition for this. In this new
paper we extend the condition with rotating array antennas. We
also formulate an optimization problem for, besides the clutter
cancellation, also maximizing the target signal.

I. INTRODUCTION

Several objectives have been employed for suppressing
surface clutter in airborne radar: maximize the Signal to
Interference plus Noise Ratio (SINR) [1], [2]; maximize
detection probability while holding a constant probability of
false detection [3], [4]; and total cancellation of the clutter
signal with no thought of the target signal [5]. These objectives
have led to Space-Time Adaptive Processing (STAP) (fully
adaptive, reduced dimension and reduced rank [1], [6]); CFAR
(Constant False Alarm Ratio) detection filters like Kelly’s [7]
and Adaptive Matched Filter (AMF) [8]; and Displaced Phase
Center Antenna (DPCA) [1], [2], [5], [9], [10]. An assumption
in DPCA is that the antenna elements lie on a line parallel to
the velocity vector of the radar platform so that the elements
can take each others position at different times.

In [11] we theoretically investigated whether it is possible
with other antenna geometries, i.e. other antenna element
positions, for a total cancellation of the clutter. We allowed
the antenna elements to be placed in three dimensions (3D).
We arrived at a condition for this. The (multipulse) DPCA
conditions [S] is a solution. Our work was an extension of
the work by Richardson [5] where he derived the multipulse
DPCA solutions for a linear array antenna aligned with the
radar platform velocity vector. In [11] we also had a discussion
about the condition, antenna element positions, target signal,
DPCA, model errors and radar parameters.

In this new paper we have reduced, changed and extended
[11]. We have reused text and equations from [11]. We have
reused Figure 1 in a modified form. Many equations are
changed versions of the ones in [11]. The only reused and
unchanged numbered equations are (6), (9), (11) and (12).

New material and results in this new paper are:

o Improvement of the explanation of the theory of the
clutter cancellation condition, including two new figures.
See Section II and Figure 2 and 4.

« Extension with theory for a rotating array antenna. In [11]
there was an example with a rotating antenna but it was
not covered by the theory. We have added a new example
with a rotating antenna. See Figure Figure 3 and 4.

o Formulation of an optimization problem for, besides
the clutter cancellation, also maximization of the target
signal. See Section IV and V.

In Section II we set up a signal model for received clutter
and derive the condition for its total cancellation after a
clutter filter. Section III gives examples on possible antennas
and movements. In Section IV we formulate the optimization
problem of maximizing the target signal. Section V contains
a discussion on the results and Section VI conclusions.

II. THE CONDITION INCLUDING ROTATING ANTENNA

In this section we will derive the condition for total clutter
cancellation by three-dimensional DPCA with a rotating an-
tenna. The derivation is originally a copy of the one in [11]
but is changed and extended for rotating antennas. First, we
will set up a signal model for the received radar signal from
a clutter cell. Then we apply a 2D clutter filter in space and
slow-time on the signal and finally we will see what is required
for the clutter signal to vanish. The derivation is inspired by
the one in [5] but ours is more general.

The phase shift from a fix point in space (= the phase center)
to antenna element n (including antenna rotation) for radar
pulse m and for the impinging signal from the i*" clutter cell
is

Ps,n,m,i — kz . R(7n)rn = ZTﬂ—kAz . R(m)rn (1)

where 1, is the position of the n™ element, R(m) is the
antenna rotation matrix for the mth pulse, and "-" denote scalar
product. Vectors x are denoted by a bold upright font. The
wave vector from the i*clutter cell is k; = QT’TIQL where E,
is the unit direction vector from the clutter cell to the origin
of the antenna and ) is the wavelength of the radar wave. We
assume far field conditions.

A general rotation matrix R(m) for rotation with angular
velocity w around an arbitrary rotation axis u = (ug, ty, uz),
with |lu|| =1, can be expressed succinctly as [12]:



R(m) = cos0,,I+ sin0,,[u]« + (1 — cos Qm)uuT )

where I is the identity matrix, 6,, = wm1 and

0 —Uz Uy
ulx = | u. 0 —uy 3)
—Uy Uy 0

which is the the cross product matrix of u. The quantity T is
the PRI (Pulse Repetition Interval).

The phase shift for the impinging signal from the it" clutter
cell at pulse repetition interval (PRI) m due to movement of
the radar platform, i.e. the Doppler shift, is

2 ~
Grmi = ki - 2mTv = TWQkZ- -vmT 4)

which contains the usual formula f4 = 2v/X for the mono-
static Doppler frequency fq with platform radial velocity v.
The quantity v is the radar platform velocity vector.

The signal from the i** clutter cell is

si(n,m) S)
27 R;

= Az(ku n, 7n) eXp(fj ) eXp(fj [‘Psnmn,i + 99t,m,iD

R;

N 2
= A(k;,n,m) exp(—j —

where the complex scalar A,;(lAq.,t) contains contributions
from the mean specific RCS (m?/m?), RCS fluctuations,
clutter cell area, grazing angle, range attenuation, propagation
attenuation, and transmitter and receiver antenna gains. The
factor exp(—j ZWAR’) is the phase shift for the distance R;
from the clutter cell to the phase center of the antenna. We
recognize in (5) the phase contributions due to the antenna
element positions and due to the platform movement.

We apply a standard 2D clutter filter in space (antenna
elements) and slow-time (the PRI dimension) on the signal

from the i*" clutter cell
N-1M-1
Yi = Z Z w:LmSi(n7m) (6)
n=0 m=0

where NV is the number of antenna elements, M is the number
of PRIs and w,,,, is the filter coefficient for antenna element
n and PRI m. Complex conjugate of a quantity a is denoted
by a*. If we insert (5) in (6) and ignore the phase caused by
R; (it will not matter for us), we obtain

=
=

-1

yi = w?,, As (ki, n, m) exp(—jki-[R(m)r, + 2mTv])

nm

n=0 0

3
Il

)

To come further we assume that A,;(l},;7 n,m) is indepen-
dent of n and m. If all antenna element patterns are equal,
Ai(l}i., n,m) will be independent of n. If the clutter signal is
coherent in time during the integration interval, A,;(l}i, n,m)

will be independent of m. We now assume A;(k;,n,m)
independent of n and m. This will give

N-1M-1
yi=Aiki) Y Y why, exp(—jki - [R(m)r, +2mTv])

n=0 m=0
®)
To totally cancel the clutter we require

yi =0 )

for all clutter cells ¢. This is, of course, totally unrealistic but
it is the problem which we study in this paper and it is the
same problem as for usual DPCA.

We can rewrite (8) and (9) as

)exp(=jki - [R(m)rn +2mTV]) gor 1 — 1 K, and

KU
yi = Ai(k;) Zw:lo,k”mk exp(—jk; - [R(m)rn“_k + 277L01kTV])
k=1
Q K,
+ Z Wy g €XP(—Jki - [R(m)rs, , + 2mq i TV])
q=1k=1
(10)
where
wnuy;ch,k =0 (1 l)
Ky
> Wy iy, =0 (12)
k=1

for ¢ = 1,...,Q and all filter coefficients wy,, (n =
0,...,N—1land m =0,...,M — 1) are used exactly once
in (10).

We have in (10) partitioned the combinations of antenna
elements n and PRIs m into @) groups, ¢ = 1,...,Q. There
are K, combinations, k = 1,..., K, in group ¢. In (10)-(12)
we have given subscripts to the subscripts m and n. For ng
and my . the subscript ¢ is the group index and the subscript
k is index of the combination within the group. We give the
name g-group to the antenna positions r,,, , and PRI indices
mgx for k=1,..., K, for a certain q.

We see that for each g-group belonging to ¢ =1,...,Q in
(10), its sum over k is zero if the exponential function can be
moved outside of the summation of k. It can be moved if it
is independent of k. This is the case, if foreach ¢ =1,...,Q
forall k =1,..., K,

R(mg)rn,, +2meiTv =a, (13)

where a, is a constant vector. We may let a, be dependent on
the group ¢ but it must not be dependent on the clutter cell ¢
because we want the signal y; to be zero for all clutter cells.
Compare with equation (9) in [11] where R(myg ) is missing.

Equations (11), (12) and (13) is our condition for clutter
cancellation. Implicit in these equations is the partitions in

g-groups.



III. EXAMPLES ON POSSIBLE ANTENNAS

In this section we show two examples on non-linear anten-
nas which are solutions to the condition (11), (12) and (13).
Figure 1 and 2 display a moving rigid antenna with three g-
groups. Figure 3 and 4 depict a moving rotating antenna with
two q-groups. Figure 2 and 4 try to explain the division of the
filter weights into g-groups.

IV. THE PROBLEM OF OPTIMIZING THE TARGET SIGNAL

We see in (12) that despite the condition for total clutter
cancellation there are still some freedom in how to choose the
filter coefficients. This freedom could be used to optimize the
target signal. Since the clutter is canceled we want to maximize
the SNR (Signal to Noise Ratio) with receiver noise only [2]:

2 2
S| |WHS‘ (14)
2

H_ |2
= max = max|w S|
w w

w wiKw

where w is the filter weight vector, s is the received target
signal and K = o021 is the white receiver noise covariance
matrix. The noise power is 02. We also choose Hw||2 =1as
in [2].

We assume that the g-groups, ¢ = 1,...,(Q, are already
selected, i.e. not part of our optimization problem. Then we
can reduce the size of w and s by removing the rows where
w has zeros according to (11). The optimization problem (14)
will still be the same. Let the vector w be the reduced filter
weight vector and s the reduced target signal.

The optimization problem is now

max w5 (15)
w
subject to
Iwl* =1 (16)
and
Kq
D Wngmg =0 (12)
k=1

forg=1,...,Q.

The subscripts n43 and myy still refer to the original,
unreduced, weight vector.

V. DISCUSSION

In our previous paper [11] we had a discussion about
antenna element positions, the constant vectors a4, the g-
groups, the target signal, comparison with usual DPCA, effect
of and handling of model errors, and restrictions on radar
parameters. This discussion is valid also for our new paper.
We refer our reader to [11].

The use of DPCA with a rotating antenna could be a mode
for detection of moving targets with a moving surveillance
radar which already has a rotating antenna. Even if the

example with a rotating antenna in Figure 3 and 4 has the
DPCA function when the antenna axis is close to perpendicular
to the platform velocity vector, it is also possible with antennas
which has the DPCA function when the antenna axis is close
to the velocity vector.

Also a rotating antenna must follow the well-known princi-
ple of DPCA that antennas should take each others positions
to cancel the clutter. This was also noted and discussed for
the antennas in [11].

A rotating antenna faces additional difficulties compared to
a fix antenna when used with DPCA: It is more difficult to
achieve that the antenna elements take each others positions
with a rotating antenna. Also the rotation frequency must be
matched with the platform velocity vector and the PRF (Pulse
Repetition Frequency). The reuse of the same antenna element
will probably give a different antenna gain due to a different
direction relative the element, giving channel mismatches. The
DPCA condition is only valid for part of the rotation circle
meaning that part of the time the clutter cancellation cannot
be done.

The solution to the optimization problem (15), (16) and (12)
is the weight vector W = Wp,¢ which is as parallel as possible
to the target vector s. The weight vector w can reside in a
space (2 defined by (12). If § resides in €2, then Wt = S/ ||8]|.
This gives the white-noise matched filter solution [2]. If § does
not reside in £, then W,y Will be on the boundary of (2 as
close as possible to be parallel with s.

The g-groups can often be selected in different ways. This
selection could also be included in the optimization problem.

VI. CONCLUSIONS

We have extended the condition for total cancellation of
surface clutter in moving radar in [11] with a rotating array
antenna. The condition is still based on an explicit model
of the received clutter signal. We again arrive at the well-
known principle that antenna elements should take each others
positions at different points of time.

We also formulate an optimization problem for, besides the
clutter cancellation, also maximizing the target signal.
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Abstract: Safety and security applications benefit from better situational awareness. Radar micro-Doppler signatures from
an observed target carry information about the target’s activity, and have potential to improve situational awareness. This
article describes, compares, and discusses two methods to classify human activity based on radar micro-Doppler data.
The first method extracts physically interpretable features from the time-velocity domain such as the main cycle time
and properties of the envelope of the micro-Doppler spectra and use these in the classification. The second method
derives its features based on the components with the most energy in the cadence-velocity domain (obtained as the
Fourier transform of the time-velocity domain). Measurements from a field trial show that the two methods have
similar activity classification performance. It is suggested that target base velocity and main limb cadence frequency
are indirect features of both methods, and that they do often alone suffice to discriminate between the studied
activities. This is corroborated by experiments with a reduced feature set. This opens up for designing new more

compact feature sets. Moreover, weaknesses of the methods and the impact of non-radial motion are discussed.

1 Introduction

The world today has brought on a need to pay increased attention to
safety and security issues, for example, search and rescue operations,
surveillance, and protection of critical infrastructure. These tasks are
often labour intensive and potentially dangerous. This provides an
incentive to create systems that aid operators to gain situational
awareness.

Part of gaining situational awareness is to know what people in an
area are doing. This article addresses this problem by studying how to
classify human activity using radar micro-Doppler measurements. The
micro-Doppler measurements provide valuable information about the
movements of different body parts, primarily the legs, arms, and torso.
Compared with electro-optical sensors, radar offers better range and
radial velocity information, as well as, insensitivity to light and
weather conditions, at the cost of lower cross-range resolution. This
motivates using a radar system.

The classification problem is often divided into two subproblems:
feature extraction and classification. The latter is usually performed
using standard methods. Feature extraction is very problem specific,
and depends on factors such as the type of the radar used, the
environment, and target characteristics. A wide variety of radar
systems have been applied to the problem [1-6], contributing to a
variety of different suggested features. Two main types of features
are mostly pursued in literature: features derived directly from the
received radar signal [7-10] and features computed from
time-velocity-diagrams (TVDs) [1-3, 6, 11, 12]. The former features
are often inspired by similar approaches used in speech processing.

In [9] human activities of a human standing still were classified.
Fighting and/or if a target is carrying an object has also been studied
in literature [1, 3, 11]; as well as, human activities including groups
of people or vehicles [2]. The focus here is to study methods that
distinguish between a number of different human activities; creeping,
crawling, walking, jogging, and running, similar to [1].

TVDs can be used in several ways for classification: direct
comparison with average class TVDs [11]; extraction of features
using principal component analysis and linear discriminant
analysis [3, 11]; or extraction of features with physical
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interpretation [1, 6]. Another approach is to derive cadence
velocity diagrams (CVDs) from the TVDs and extract features
directly from the CVD [4, 5]; or further process the CVDs to
remove effects of the base velocity [2].

Several different classifiers have been used for micro-Doppler
classification, for example, support vector machines (SVMs) [1, 2,
4, 6, 13], Gaussian mixture models [2], Bayesian classifier [14]
and k-nearest neighbour classifier [13, 14]. Typically, a
classification accuracy of approximately 90% is reported.

Here, a TVD based method with interpretable features [1]anda CVD
based method [4, 5] will be described, compared, and discussed based
on micro-Doppler datasets of people performing different activities.
Based on this, two major information carriers in the dataset are
pointed out, the target base velocity and the main limb cadence
frequency, which together are enough to achieve classification
performance comparable with the two other studied, and considerably
more complex, methods. The two information carriers are present in
both of the more complex methods. In this way we hope to highlight
the question: How much information must a feature set contain to be
useful. Neither of the two methods is new. Instead the novelty of this
article is the comparison of the two methods; and based on the fact
that they perform similarly, a discussion about what underlying
properties are the most important for the classification.

The article is organised in the following way. In Section 2 the
addressed problem and the available datasets are described,
Section 3 deals with the classification problem with focus on the
feature extraction step and the two studied methods. Section 4
describes how the experimental results are obtained. The results
are then presented in Section 5 and discussed in Section 6 and the
findings are summarised in Section 7.

2 Available data
2.1 Radar description

The radar system used is a frequency modulated continuous wave
(FMCW) radar with linear FM sweeps (40 us length and 160 MHz



Table 1 Available measurements in the experimental dataset (No.
sequences/No. segments) distributed over the performed activities

creep crawl walk jog run Total
toward 4/11 3/9 6/22 2/8 2/4 17/54
away 2/5 12 6/23 2/7 2/4 13/41
Total 6/16 4/11 12/45 4/15 4/8 30/95

bandwidth), a PRF, i.e. the repetition frequency of the sweeps, of 17.6
KHz, a carrier frequency of 77 GHz and horizontal polarisation
(called SIRS1600TD) by SAAB AB. Its designed target detection
range is between 10 m and 200 m. The radar has a resolution of
Im in range and 1° in azimuth. In our setup, the radar was
pointing fairly horizontal. The sensor is a prototype of a general
purpose mobile radar system. It is neither specifically optimised for
obtaining micro-Doppler, nor for the specific classification task.
The fact that the radar was not designed specifically for the studied
classification task makes the results more applicable.

After acquisition, the signals were pulse compressed and velocity
compensated, the latter in order to compensate for movements across
range gates and shift each target into a single virtual gate. The signals
were also filtered to remove stationary clutter using an ideal high-pass
filter (in frequency domain) with a cut-off velocity of £0.1 m/s.

2.2 Collected data

For this paper, data was collected from three test subjects (adult
males of average height and build) crawling, creeping on their
hands and knees, walking, jogging and running, directly toward or
away from the radar at a distance of 20—60 m, on a clear day

Velocity [m/s]

Velocity [m/s]

Cadence Frequency [Hz]

c

Fig. 1  TVD and corresponding CVD for persons walking and running

a TVD: walking person
b TVD: running person
¢ CVD: walking person
d CVD: running person

without rain and on fairly flat and dry ground covered with short
grass. In total, 30 data sequences were collected (approximately 12 s
each) and split into time segments of 2.5 — 3.5 s each, giving a total
of 95 segments, see Table 1. Bookkeeping was done to keep record
on which time segments that belong to the same sequence.

The available data only cover radial movements, which is a
shortcoming. There are important security applications where
non-radial motion occurs. However, in many security applications
most interesting targets naturally approaches the radar radially or
close to radially or the situation can be designed in such a way,
for example, by placing two radars orthogonal to each other.
Another argument for using radial data is that the features
extracted stem from movements in the targets forward direction;
hence, radial data makes a good candidate for evaluating the
expressiveness of different features sets, whereas discussions about
movements in non-radial angles become less well founded.

In [15] measured data for non-radial movement at 45° and 90
were also used. The TVDs of the movements at 45 are similar to
the TVDs at 0" with some important differences, while the TVDs
at 90" are totally different from the TVDs at 0 and 45°. These
non-radial data could not be used in this article in the same
classification experiment due to various reasons and new data are
not possible to measure. However, the non-radial data have been
used in Section 6.3 to discuss and predict the behaviour of the two
features/parameters suggested as sufficient in this article, namely
the base velocity and the cadence frequency.

2.3 Time-velocity diagram

The analysis in this article is based on target micro-Doppler
signatures, represented as TVDs. A TVD is the absolute value of a
short time Fourier transform (STFT) of the time domain radar

Velocity [m/s]

Velocity [m/s]

Cadence Frequency [Hz]
d
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signal, see Fig. 1 for examples and [15] for an extensive set of TVDs.
The time domain signal consists of different radar sweeps for the
same radar range. The sampling frequency in the time domain is
the PRF, thus 17.6 kHz.

The STFTs in this article were computed by overlapping FFTs
with an integration time of 37.5 ms, a Hamming window and a
time step of 5 ms. The integration time is a compromise between
the velocity resolution for a constant radial movement (long
integration time is good) and the smearing of the TVD caused by
radial acceleration (short integration time is good). The chosen
integration time is according to the experience of the authors
suitable for this kind of target and movement. The chosen time
step gives smooth TVDs in the time dimension. The window used
is a standard window with low sidelobes. After the STFT the
signal magnitude is converted to dB and this is the TVD used for
the feature extraction.

2.4 Cadence-velocity diagram (CVD)

The article does also make use of CVDs, which are obtained as the
absolute value of the Fourier transform of the TVDs with respect to
time. Fig. 1 shows TVDs and corresponding CVDs. A CVD shows at
which rate different velocities in a TVD repeat (‘cadence
frequencies’). The CVD characterises the shape, size, and
frequency of the TVD components, which in turn relate to moving
parts of the target. CVDs have previously been used to extract
features, for example, [2, 16]. An interpretation of the CVD is
given in [4, 5].

2.5 Ground truth

To create ground truth information, each data segment has been
inspected and manually annotated with the target’s base velocity
(the velocity of the centre of the mass/main radar cross-section)
and main limb cadence/cycle frequency (defined by the cycle time
of the micro-Doppler effects produced by the limbs). Fig. 2
depicts the acquired values. These two properties will be used in
Sections 4 and 5 to discuss about what are two important
information carriers in the dataset.

3 Classification
Classification is often performed in two steps: feature extraction and
feature to class mapping (or just classification).

In the first step, data, x, is mapped onto a set of features, z, using a
feature extractor

z=F(x), 1)

x €R"and z € R"™. In the second step, features, z, are mapped onto a
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Fig. 2 Distribution of base velocity and limb cadence frequency for all

targets within the dataset
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discrete set of classes using a classifier

c=C@), c€{C,Co....C) @

> bp

This article applies both these steps, but focus lies on the feature
extraction step which is further analysed.

The purpose of the feature extraction is to bring out the
discriminating information contained in the data while at the same
time suppressing natural variations. This is to simplify the
classification task. In the context of this article, features should be
robust to movements in the background, moving vegetation, etc.,
and thereto also be invariant to natural variations between human
individuals, to persons carrying objects or not (unless this is of
interest), to the direction of movements, and so on.

Two different feature extractors are considered: one by Kim and
Ling [1], here denoted the time-velocity (TV) feature method, and
one developed at FOI [4, 5], here denoted the cadence-velocity
(CV) feature method. The method by Kim and Ling has been
chosen for the comparison with the method developed at FOI
because they have very similar problem formulations. Both the
studied methods are outlined below.

3.1 TV features, [1]

The features considered in this section are extracted from the TV
domain, using the method in [1]. The z™ comprises six features
derived from the TVD representation of the radar signal: z;, the
torso Doppler frequency; z,, the total Doppler bandwidth of the
signal; z3, the offset of the total Doppler; z;, the Doppler
bandwidth without micro-Doppler effects; zs, the normalised
standard deviation of Doppler signal strength; and zg, the period of
limb motion (i.e. the cadence/cycle frequency). See Fig. 3 and [1]
for details.

How to implement these six features is not completely described
in [1], hence here follows the interpretations used in this article:

e The upper and lower envelope in the TVD (needed for z,, z3, and,
z), were computed as the top and lower 10%-percentile of the signal
energy in each time slot. The noise below a threshold was first
removed as in [1]. However, the threshold was selected in a
different way than in [1] since the method used in [1] did not
produce a good enough threshold to be useful in our case.

o The highest and lowest values of the upper and lower envelope (z,
and z3), have been implemented as the 5% highest/lowest values.

e z5 was implemented as the standard deviation of all values in the
TVD divided by the average of all the above-noise values in the
TVD.

e The period of the limb motion (z¢), was computed by extracting
the peaks of the upper envelope and averaging the time between
them.

= Upper envelope

— Lower envelope
Base velacity
BWewt pDoppler
BW:wo pDoppler

Velocity [m/s]

- Cycle interval

Fig. 3 TV based feature extraction. A TVD with some of the features in the
TV method illustrated



Note that noise thresholding is needed in the TV method to
remove the background noise prior to extraction. This tuning
parameter is not needed in the CV method described next.

3.2 CV features, [4, 5]

The CV features, [4, 5], described in this section incorporates the
strongest parts of the CVD in the feature vector as described
below and illustrated in Fig. 4.

(i) Compute the total energy, u(f), for each cadence frequency,
f¢, in the CVD, that is, sum up the contribution of all velocities.

(ii) Choose the M (here M=3) strongest peaks (cadence
frequencies) in u(f°), {ﬁ”};zl, and extract the matching velocity
profiles (the energy content for the different velocities, f*, for the
cadence frequency, f°), {v,(f")}¥,, from the CVD. The choice
M =3 is taken from [5], where this value gave good results.
(iii)) Compute the base velocity v, as the peak velocity within the
total velocity profile (sum the energy for all cadence frequencies).
(iv) Resample the velocity profiles with linear interpolation, in L=
100 points, to obtain {vi(f,v)},»L:,. (L is a tuning parameter, for which
the value 100 seems to work well.)

(v) Normalise the velocity profiles, while maintaining relative
magnitudes.

The final feature vector comprises in the given order: the chosen
cadence frequencies, the sampled velocity profiles, and finally the
base velocity, that is (see (3)).

An important difference to the feature vector in [4] is that in [4] the
base velocity was not included in the feature vector. However in the
current article we want to show the importance of the base velocity
for different human activities and therefore it is included here. There
were also differences regarding normalisation and reversion of the
velocity profiles in the feature vector in [4]. Further, in [4] only
two cadence frequencies were used. Although the feature selection
method in principle was the same as in [4], the feature vector was
not the same. It would be an interesting continuation of the
presented work to also try to determine automatically how many
cadence frequencies are needed.

3.3 Classification algorithm

In this article SVMs [17] are used for the classification task because
they have a good reputation and nice properties and because they are
frequently used in micro-Doppler classification literature. They have
also given good results earlier [4, 5] with the CV features used in this
article. A SVM is a maximum margin classifier, that aims to find
hyperplanes that yields the largest possible margin of separation
between clusters of data from each respective class. A SVM has
some nice properties which makes it a suitable choice for this
article, namely it can handle linearly non-separable classification
problems, multi-class scenarios and multidimensional data. In the
future it could be interesting to evaluate different classifiers.

4 Experimental details

In this section the experimental details behind the results presented
in this article are given.

4.1 Feature extraction

For each TVD in the dataset, feature vectors were constructed using
the two feature extraction methods. The fact that TVDs from the
dataset originate from movements in both directions relative to the

Velocity [m/s]

01 2 3 4 5 6 7 8 9
Cadence Frequency [Hz]

Fig. 4 CV based feature extraction. A CVD with some of the features in the
CV method illustrated (cadence firequencies and velocity profiles)

radar calls for post-processing of the feature vectors. The sign was
hence removed from the base velocity, 2(3%‘\() = |vyl, leaving only
the speed which avoids that the CV classification method is
affected by the direction of movement. The TV features are
changed accordingly to make the comparison fair, that is, the signs
are removed from z(1 and z; ). This slightly improves the
performance of the TV method on the considered data.

Furthermore, to make the feature vectors suitable for the classifier,
all features were normalised component-wise to achieve |z <1 for
all i. This is important to avoid that features with larger numeric
ranges will dominate over features with smaller ranges and to
avoid numerical problems [18].

Finally, and for reasons to be discussed below, a reduced variation
of the CV feature extractor, called the reduced CV method and
denoted the CV™ method, was designed, which extracts only the
M major cadence frequencies (here, M=3) from the CVD and the
base velocity, that is

R P SV (W ) o)

4.2 Classification: set-up

The SVM classification was performed using LibSVM [19] and
labelled time segments with five activities (disregarding the
direction of movement)

¢; = {crawl, creep, walk, jog, run}. 5)

In addition to the procedure of using a set of samples to train on, the
SVM has a few extrinsic parameters that need to be set, namely a cost
parameter and a kernel function [20]). For each feature extraction
method, a grid-search based strategy was used to find an
appropriate kernel (with parameters), and cost-parameter (C). The
kernels in Table 2 were those being evaluated. To make efficient
use of the limited set of data, leave-one-out cross validation was
applied to evaluate each parameter setting within the grid. The
best settings for each method are given in Table 3 together with
the resulting classification accuracy. Accuracy is defined as the
number of correctly classified samples divided by the total number
of samples.

e AR AR (1))

i) vt

() vol- 3)
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Table 2 Tested SVM kernel functions

Kernel Klu, v)
Linear uv
Polynomial (yuTv+ co)
RBF (radial basis function) exp(—ylu—vi?)

Sigmoid

tanh(yuTv+ co)

Table 3 Optimal SVM parameters as determined by leave one out
cross validation and a multi-dimensional grid of candidate parameter
settings

Features Kernel Parameters Accuracy, %
Fev(xi) Linear c=2’ 92
Foy-(xi) RBF C=273y=2" 91
Frv(xi) RBF Cc=25y=2"2 88

4.3 Classification: training and validation

For each set of feature vectors, a classifier was trained using the most
appropriate setting as determined above. Due to the limited dataset,
resampling was used to train and validate the classifiers. A
‘leave-one-sequence-out’ cross validation procedure was used, that
is, one sequence at the time was removed from the training dataset
and used for validation, and this procedure was repeated for each
sequence. This approach was used to minimise the dependency
between the training and validation phase.

5 Results

The results from applying the different feature extraction methods
and then using an SVM are summarised in Fig. 5. In terms of

overall accuracy, the results are comparable with what is reported
in, for example, [1]. The results indicate that the TV and CV
methods have comparable performance and that the base velocity
and the major cadence frequencies capture the important
differences between the activities. This is indicated by the
separation between the classes in Fig. 2 and the performance of
the reduced CV method, CV~, in Fig. 5.

The most difficult activity to classify is crawling; a majority of
miss-classified activities involve crawling. The same thing is
indicated by Fig. 2, where crawling clusters poorly with instances
close to several other activities. This makes it difficult to find a
classifier that separates out crawling, at least using the base
velocity and cadence frequency. The most common mis-
classifications of the true class ‘crawl’ by the CV based methods
(CV and CV"-) is with the class ‘creep’. In addition, it was
difficult in [4] to separate crawling and creeping with the CV
based method used there.

6 Discussion

In this article we do not try to provide conclusive evidence that one
feature extraction method is better than the other. Instead we provide
a qualitative comparison of the two studied methods and what
features which seem to provide most information about the human
activity. The authors recognise the limited possibility to draw
extensive conclusions about feature/classifier performance from the
material presented here, partly due to the limited size of the
dataset, the activities and the individuals studied. Trustworthy
claims about a method’s performance require a dataset with many
repetitions, individuals, activities, conditions, scenes, directions of
motion, etc. However, we think, that for the purpose of the article,
the data we have used are sufficient. In this section we will discuss
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Fig.5 Classification results derived using ‘leave-o q -e-out’ validation with 95 instances of data. The numbers in the boxes are the samples classified that way

a Full CV method, Fcvy(x). Accuracy: 91%
b Reduced CV method, Fcey-(x;). Accuracy: 87%
¢ TV method, Frvy(x;). Accuracy: 87%
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more about sufficient features, weaknesses of the methods and
non-radial movement.

6.1 Base velocity and cadence frequency are sufficient

It is interesting to discuss the feature extraction methods in light of
the dataset being used. The data used in this article represent a
quite ‘normal’ scenario with subjects moving with a fix aspect
angle, and with ‘normal’ gaits (no excessive arm movements etc.).
Under these conditions, the two features base velocity and cadence
frequency can provide competitive classification results (see
Fig. 2). This is interesting, especially as these properties are
implicitly included in both the TV and CV methods. The TV
features are mostly related to velocity information, but the period
of the limb motion is closely related to the cadence frequency. On
the contrary, CV features focus on cadence frequency information,
but the feature vector also include the base velocity.

Thus, the base velocity and cadence frequency are two very
descriptive parameters for human gait classification. Therefore, a
feature vector containing derivatives of these parameters (such as
the studied methods) are likely to perform well in ‘normal
scenarios’. A question is then how ‘rich’ a dataset must be to
thoroughly evaluate feature extractors and classifiers? It is also
interesting to determine in which situations a target’s base velocity
and main cadence frequency are sufficient to classify its activity. It
may, in many situations, be advisable to focus on robust
estimation of these two parameters instead of developing advanced
feature extractors trying to mine-out every detail of a TVD. This
aspect has just begun to get attention in the literature. In [21] a
method for estimation of base velocity and main cadence
frequency based on only the cadence frequency and mean velocity
of the torso is suggested. A similar result to ours is found in [6],
where the authors note that the cadence frequency and step length
(‘stride’) are two very descriptive parameters for distinguishing
between humans and small animals. The paper [22] applies mutual
information to select features with a good discriminative quality
and good feature estimation quality.

6.2 Problems with the TV and CV methods

The TV method relies heavily on the upper and lower envelope in the
TVD of the target. Our experience is that it can be difficult to
automatically estimate these envelopes, especially with low
signal-to-noise ratio. This leaves us to believe that the CV method
is more robust as the signal does not have to be separated from the
noise (the TV method makes use of a user selected threshold for
this, it affects the result, no such user input is needed in the CV
method). The CV method can have a different problem, namely to
robustly estimating the cadence frequencies from the CVD, point ii
in Section 3.2. These conclusions should be further evaluated and
tested with datasets including also non-radial data. Furthermore,
the CV method uses a very high-dimensional feature space which,
due to the ‘curse of dimensionality’, is not always wanted.
Therefore, the reduced CV features set, CV~, comprising only the
base velocity and cadence frequencies, was evaluated. With the
current dataset, reducing the feature set does not impair the
classifier significantly, see Fig. 5.

6.3 Non-radial movement

We believe that the cadence frequencies of the CV method and the
base cadence frequency of the TV method are robust up to at least
45° direction of movement. We motivate this by looking at the
figures in [15] for a walking and a running person. The envelope
of the TVD is clearly seen also for 45°, which would make it as
easy to estimate as for 0° for the TV method and as easy to obtain
the correct cadence frequencies for the CV method. See [4, 5] for
how the CV method works.

The variation of radial velocity with direction of movement will
make it more difficult to separate classes when using data from
several directions of movements. This will affect the separation of

‘crawl’ from ‘creep’ and ‘crawl’ from ‘walk’ most, since the
classes cannot be separated solely on cadence frequency
information (see Fig. 2). Another complication with non-radial
movement is that the trajectory of the torso becomes more unclear
in the TVD, see figures for ‘walk’ and ‘run’ in [15]. This will
probably lead to a more uncertain estimation of the base velocity
and also making it more difficult for the ‘crawl’ class. Thus, there
would be more misclassifications involving the ‘crawl’ class for
non-radial movement. The classification of the other classes should
be fairly robust up to at least 45°.

More extensive experimental data is needed to verify these
hypotheses. To experimentally verify these we would need to
measure on the same moving person simultaneously with several
radars in different directions. The TVDs and CVDs of several
subsequent measurements, as the ones that we have, vary also
because of different human individuals and different movements
of the same individual.

An idea for future work would be to replace the base velocity
feature with features which are more independent of angle, such as
the ratio of velocity bandwidth to base velocity, as suggested in [15].

7 Summary

In this article two different methods to extract features from
micro-Doppler spectrograms, using features in the TV and CV
domains, have been described and applied to a dataset containing
measurements from different human activities. SVM was then
used with these features to classify activities, with no significant
differences in the classification results. Properties of the extracted
features were discussed, and it was shown that comparable
classification performance can be obtained using only two
properties for the studied dataset, namely the target velocity and
the main cadence frequency. This was demonstrated by reducing
one of the feature sets. It was noted that these properties are
present in both unreduced feature sets, that is, in both feature
selection methods. This suggests that a feature vector with robust
estimates of these two properties could be sufficient in many
applications. The suggestion must be taken with some caution
since the dataset was limited. An interesting direction for future
research is to find more robust and efficient ways to construct
feature vectors including the target velocity and the main cadence
frequency. Moreover, weaknesses of the methods and the impact
of non-radial motion have been discussed.
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Abstract—In security surveillance at the perimeter of
critical infrastructure, such as airports and power plants,
approaching objects have to be detected and classified.
Especially important is to distinguish between humans,
animals and vehicles. In this paper, micro-Doppler data
(from movement of internal parts of the target) have been
collected with a small radar of a low-complexity and cost-
effective type. From time-velocity diagrams of the data,
some physical features have been extracted and used in
a support vector machine classifier to distinguish between

the classes "human', "animal" and '"'man-made object''.

Both the type of radar and the classes are suitable for
perimeter protection. The classification result are rather
good, 77% correct classification. Particularly interesting
is the surprisingly good ability to distinguish between
humans and animals. This also indicates that we can
choose to have limitations in the radar and still solve the
classification task.

I. INTRODUCTION

The application in this paper is security surveil-
lance at the perimeter of critical infrastructure, such
as airports and power plants. Approaching objects
have to be detected and classified. Especially hu-
mans, animals and vehicles have to be separated.

In this paper we have used a small radar which
is low-complexity and cost-effective in its micro-
Doppler mode for the classification. We do not
address the detection. We have collected micro-
Doppler radar data of different target types, ex-
tracted features and classified the targets. By micro-
Doppler we mean the Doppler shifts generated by
the movements of internal parts of the target. We
have used micro-Doppler data from humans, cars, a
horse, a dog and from a consumer drone.

Advantages with a radar compared to electro-
optical sensors is its ability of very accurate radial
velocity measurements, its large surveillance area

coverage, its ability of direct distance measurements
and its ability to operate in all weather and all light
conditions. A radar is also less affected of human
clothing choices and is privacy preserving, which is
to advantage for security surveillance.

The use of radar micro-Doppler is a relatively
new area of research but has generated a large
number of papers the last years. For example, clas-
sification of human activities has been performed
in [1], [2], [3], distinguishing between humans and
vehicles in [4], [5]. Birds and different kinds of
consumer drones are classified in [6], [7]. Not much
research results on automatic separation of humans
from animals has been reported. In [8] TVDs (Time
Velocity Diagrams) are shown for a human walking,
power walking, jogging and running, for a horse
(with rider) walking and trotting, for a lawn mower
tractor (with driver), for a car and for a man riding
a bicycle. The authors do not extract features or
classify the targets but state that there is potential
to classify the target type. In [9], which is the most
similar work we have seen to our present paper,
they classify the target types human, dog, bicycle
and car using physical features from the TVD and a
SVM (Support Vector Machine) classifier. They see
as the main problem the separation between humans
and animals. Two books, dedicated entirely to radar
micro-Doppler, have appeared [10], [11].

II. MEASUREMENTS
A. The radar

We have used an experimental radar from the
company IMST in Germany. In the micro-Doppler
mode it is a CW (continuous wave) radar without
modulation. Only the carrier wave at 24 GHz is
transmitted. The radar only measures Doppler and



without the sign of the Doppler. Internally the radar
generates a TVD (Time Velocity Diagram) by non-
overlapping FFTs. A TVD has time on one axis
and velocity on the other. For each time instant
it displays the velocity contents of the target. See
Figure 1 for an example. The sampling frequency
within the FFT was 12.8 kHz and the integration
interval for a single FFT was 80 ms. The radar do
not measure range nor direction to the target in the
micro-Doppler mode. Its wide antenna beam and
single “range bin” give a large coverage in direc-
tion and range (if the SNR is sufficient). Vertical
polarization was used. The radar has low power
requirements.

Two limitations of the radar are more important
for us. First, the time resolution of the TVDs
(approximately 90 ms) is too low to separate many
internal target motions. Second, the SNR decreases
quickly with range, probably because of low trans-
mitted power and wide antenna beam.

The radar has other modes that we have not used
in this paper.

B. Measurement campaign

On December 17, 2014, we conducted a measure-
ment campaign at the backyard of FOI (Swedish
Defence Research Agency) in Linkoping, Sweden.
The targets moved mostly radially towards or away
from the radar.

C. Data pre-processing

We have performed manual detection of the tar-
gets and manual selection of the time intervals with
target signal present. Such an interval we call a
“target sequence”. Then we have split the original
target sequences into smaller ones, 2.5 — 3.5 s long
with a nominal length of 3.0 s. We have manually
assigned true classes to the target sequences. The
total number of target sequences is 1136, of which
303 belong to the “human” class, 359 to “animal”,
168 to “vehicle” and 306 to the “other” class. See
below for the definition of the classes.

III. FEATURE EXTRACTION AND
MICRO-DOPPLER SIGNATURES
A. The Kim-Ling features

We have used the physical features defined by
Kim & Ling [1]. They are extracted from the TVD.
The features are:

« f(1) - Base velocity or torso/body radial veloc-
ity.
o f(2) - Total BW (Bandwidth) of Doppler signal.
« f(3) - Offset of total Doppler.
« f(4) - BW without micro-Doppler.
o f(5) - Normalized standard deviation of
Doppler signal strength.
« f(6) - Cadence/cycle frequency (= period of
limb motion for humans and animals).
See [1], [12] for details of the definitions. We es-
timate these features with the algorithms described
in [12]. We have made some modifications of the
noise thresholding since [12].

B. Micro-Doppler signatures and feature extraction

In this Section we will show TVDs of different
target types and also illustrate the function of the
Kim-Ling feature extraction. For different target
types we have defined four classes to recognize,
namely “human”, “animal”, “vehicle” and “other”.

Figure 1-2 show the TVD of a single person
walking radially relative the radar without carrying
anything. The figures also illustrate the Kim-Ling
feature extraction. There are three plots for each
target sequence. The top plot depicts the original
TVD before the feature extraction. The level in the
TVDs is not normalized to the noise level. (The
different background colors do not mean different
background (i.e. noise) power. Look at the differ-
ence between the level of signal and background.)
The middle plot shows the result after the noise
thresholding. Ideally the target signal should be
completely included and visible while the back-
ground should be clear from signal (a dark blue
color).

The bottom plot illustrates the feature extraction.
The feature f(1), torso radial velocity, is shown in
the plots as a dashed white horizontal straight line.
The features f(2), f(3) and f(6) need the estimation
of the upper and lower envelopes. These envelopes
are shown as solid red and blue lines. The total
bandwidth without micro-Doppler, feature f(4), is
shown as the band between two dotted black straight
horizontal lines. The total bandwidth of Doppler sig-
nal, feature f(2), is shown as the band between two
dashed green straight horizontal lines at f(1)40.5
f(2). Feature f(6), the period of limb motion, is
shown as the distance between two red straight



vertical lines. The remaining feature, f(5), is not
illustrated in the plot.

The estimation of the envelopes works well most
times for humans. See Figure 1 for an example.
The noise thresholding in the figure is perfect. A
few times the noise thresholding fails for humans
because of low SNR, see Figure 2.

Two different animals were included in the target
class “animal”, a dog and a horse. The dog per-
formed two activities. First, the dog was running
from and towards radar. Then, the dog was moving
and looking for candy. See Figure 3, left plots. The
horse had a rider but the rider will most likely not
contribute significantly to the TVD. Compare with
a human carrying an object in [13]. Figure 3, top
right plot, displays the TVD of the horse “walking”.
Walking probably means slow-moving. The real gait
is unknown. A TVD of the horse “running” (with
rider) is depicted in Figure 3, bottom right plot.
Running likely means fast-moving. The real gait is
unknown.

We continue to Kim-Ling features for target class
“vehicle”. In Figure 4, top left plot, the radar target
is a car driving with approximately constant speed
radially relative the radar. We see that the estimation
of an envelope fails because there is no micro-
Doppler. Only the parts of the target sequences with
pure radial movement of the car were included in
this target class.

The target class “other” consists of two different
types of target sequences. The first is a flying con-
sumer drone, a quadrocopter with four horizontal
rotors (Figure 4, right plots), and the second is the
part of car target sequences with the car moving
obliquely towards or from the radar (Figure 4,
bottom left plot).

Figure 5 is a scatter plot showing the estimated
values of three of the features, namely f(1), f(4)
and f(5), in a 3D plot projected to 2D. Different
classes have different marker symbols and colors. It
seems like the classes cluster into groups. This is
promising for the classification.

IV. CLASSIFICATION

We have employed a SVM (Support Vector Ma-
chine) [14] for the classification and used the soft-
ware package LibSVM [15]. The SVM used a radial
basis function kernel with the parameters C' = 27

KimLing2009: Criginal TVD [dB] (p5_1025b 124,85)

Velocity

Velocity

Velocity

Figure 1. TVDs of a single human. High SNR. Top plots: Original
TVD. Middle plots: TVD after noise thresholding. Bottom plots:
TVD with illustration of the Kim-Ling feature extraction. See the
text for an explanation.
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Figure 2. TVDs of a single human. Lower SNR. Top plots: Original
TVD. Middle plots: TVD after noise thresholding. Bottom plots:
TVD with illustration of the Kim-Ling feature extraction. See the
text for an explanation.
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KimLing2003: Original TVD [dB] with features (p5_1025d 32,145)

Figure 3. TVDs of a single animal. Left: The dog involved in two
different activities. Top right: a horse “walking”. Bottom right: A
horse “running”.
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Figure 4. TVDs of man-made objects. Top left: A car moving radially
relative the radar. Bottom left: A car moving at an oblique angle
relative the radar. Right: A consumer drone, a quadrocopter.

and v = 2°° These parameters were found by a
combination of a computer search with a 4-fold
cross validation and a manual search. It was difficult
to find good values of the parameters.

In the training and validation of the SVM clas-
sifier we performed a cross validation by leave one
out, where “one” are the target sequences from
the same measurement of the same target. The
classification result is shown in Figure 6. With the
original classes, i.e. “human”, “animal”, “vehicle”
and “other”, the accuracy (the percentage correct
classification) is 64.0%. However, if we aggregate
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Figure 6. Classification result (a “confusion matrix”) with the SVM.
Percentage correct classification of classes “human”, “animal”, “ve-
hicle” and “other”: 64.0%. Percentage correct classification of classes
“human”, “animal”, “vehicle” and “man-made object” (“vehicle” and
“other”): 77.5%.

the classes “vehicle” and “other” into the new class
“man-made object” the accuracy is 77%. The re-
sulting classes “human”, “animal” and “man-made

object” are suitable for perimeter protection.

V. DISCUSSION

In our present work the most difficult signal
processing was the noise thresholding (middle plots
in Figure 1 and 2). The noise thresholding is
needed for estimation of features f(2), f(3) and f(6),
see [12]. One reason for the difficulties is that the

target signal and the noise signal (external clutter
and internal noise) have varying characteristics due
to varying target types, target ranges, target activi-
ties, backgrounds, weather, radar systems etc. The
thresholding also needs high SNR. Also in [12]
the noise thresholding was problematic. In [9] they
seems to achieve a successful noise thresholding
(see Fig. 4 in [9]). This indicates a high SNR.

There are clear differences in the MDSs (Micro-
Doppler Signatures) of humans and animals on one
side and man-made objects on the other side. The
internal movements of man-made objects usually
have much higher frequencies (motor vibrations,
propeller revolutions, etc.) than for humans/animals.
This means that for the integration time and obser-
vation time suitable for humans/animals there will
be no envelope with antinodes (compare with [13])
for man-made objects.

A possibility to distinguish humans from four-
legged animals could be to utilize that animals
with quadrupedal motion has a higher cycle/cadence
frequency than humans with bipedal motion for the
same base velocity. This can be seen by comparing
Figure 1 with Figure 3 (top right).

In the classification result in Figure 6 the class
“vehicle” is most times incorrectly classified. There
can be several reasons for that:

o The “vehicle” and “other” classes have similar
micro-Doppler properties, which also are dif-
ferent from those of “human” and “animal”.
Our “other” class actually consists of some
kinds of vehicles. They are all moving man-
made objects.

o Some of the employed features, e.g. cycle
frequency, are suitable only for humans and
animals and not for man-made targets. The
result of the estimation is presumably random
values for these features for man-made objects.
The SVM classifier should to some degree be
able to disregard these random features but
they cannot be used for separating the classes
“vehicle” and “other”.

o The data set was unbalanced. There were about
half the number of target sequences for “vehi-
cle” compared with the other classes.

There are several similarities between our present

paper and the paper [9]. In [9] they also use physical
features and most of them are estimated from the



TVD. They use a feature “stride” (step length)
which we do not use but it can be derived from our
features “cycle frequency” and “base velocity”. The
base velocity is not used in [9]. The paper [9] also
uses noise thresholding and a SVM classifier. Un-
fortunately, in [9] the processing is only described
on a high level and nearly no details are given.

The paper [9] presents better classification results
than our paper but there are differences in the
experimental conditions. In [9] they only try to
distinguish humans from small animals (dogs). This
is easier than with large animals, like horses in our
paper, because the longer legs of the large animals
make their MDSs more similar to humans. Horses
resemble moose and roe deers, which are common
in Sweden.

In [9] they have a higher time resolution in the
TVD. This should make it easier to see discrim-
inating details in the TVDs. In [9] they say that
blurring of the TVD due to fast-changing micro-
Doppler of a target “makes the algorithm processing
difficult”. We have blurring of two causes. First the
low time resolution and second the fast movement
of the dog and the wheels of the obliquely moving
cars (in the class “other”). On the other hand, our
carrier frequency is higher (24 GHz) than the one
in [9] (7.25 GHz). This should make the velocity
resolution of our radar higher and enhance the
classification.

Figure 4 in [9] indicates a higher SNR than for
us, which, of course, makes the classification task
easier. The target types are not exactly the same in
our paper and in [9] which makes the comparison
uncertain.

VI. CONCLUSIONS

We draw these conclusions from our work:

ELIT3

« With the classes “human”, “animal”, and “man-
made object”, which are suitable for perimeter
protection, the probability of correct classifica-
tion on our data was 77%.

« Especially interesting in our results is the good
ability of the classification to distinguish be-
tween humans and animals. Beforehand, we did
not think this would be possible.

« Since it is not possible to see the identity of
humans from the received radar signal, a radar

is privacy preserving, something which often is
desirable for perimeter protection.

« More investigations are necessary to confirm
the classification results, to explain the results
and to see their robustness under different
circumstances (different target behaviors, target
ranges, backgrounds, etc.).

« We have used a small radar of a low-
complexity and cost-effective type, suitable for
perimeter protection, with surprisingly good
classification results. This indicates that we can
choose to have limitations in the radar and still
solve the classification task.
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Abstract: Radar micro-Doppler signatures (MDS) of humans are created by movements
of body parts, such as legs and arms. MDSs can be used in security applications to detect
humans and classify their type and activity. Target association and tracking, which can
facilitate the classification, become easier if it is possible to distinguish between human
individuals by their MDSs. By this we mean to recognize the same individual in a short
time frame but not to establish the identity of the individual. In this paper we perform a
statistical experiment in which six test persons are able to distinguish between walking
human individuals from their MDSs. From this we conclude that there is information in
the MDSs of the humans to distinguish between different individuals, which also can be
used by a machine. Based on the results of the best test persons we also discuss features
in the MDSs that could be utilized to make this processing possible.

1. Introduction

Technology for security applications has lately received much attention, for example as a means
to detect and assess human activity at critical infrastructure such as airports and power plants.
One approach to detect and classify the targets is to use radar and utilize Doppler information
(“micro-Doppler”) created by movements of parts of the human targets. In the literature, some
results on automatic classification of target type and activity using Micro-Doppler Signatures
(MDS) have been published, e.g. [1, 2, 3]. We have earlier, among others, classified different hu-
man gaits [4] and simultaneously estimated and tracked micro-Doppler and position parameters

[S].

The problem we want to address in this paper is to distinguish between human individuals from
their MDSs, or more specifically whether there is information in MDSs to distinguish between
human individuals. By distinguishing between human individuals we mean to recognize the
same individual in a short time frame but not to establish the identity of the individual. As far
as we know, this problem has not been treated earlier for radar in the literature but in sonar it
has [6, 7]. The ability to distinguish between human individuals can be utilized to enable target
reacquisition and simplify association in multi-target tracking, allowing for longer consistent
target tracks even if the target shortly leaves the field of view of the sensor or interacts with
other targets. The tracking in its turn can facilitate classification of target type and activity and
perhaps even foreseeing the intention of the target. An example is when different classifier
models are used depending on the target direction of movement. Another is classification of
target type and activity based on the target movement during a longer time interval.
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Figure 1: PCA analysis for distinguishing human individuals. The principal eigenvectors of the covariance matrix
formed by the MDSs as images were used as the model of each individual. Then the residual image was formed
for each model and MDS pair, where the residual image includes the parts of the MDS that cannot be explained
by the model. The idea is that with the correct model the residual image (the right column) will be weak but with
incorrect model it will be strong. In our tests we did not manage to obtain models stable enough over time to be
useful. Fig. 9 in [9].

2. Problem description

It is possible for a human to visually discriminate different human gaits from MDSs and under
easy conditions also a machine can do this, see e.g. [4, 8]. On the other hand, we have found
it difficult to make a machine distinguish between human individuals from their MDSs. We
have tested an approach for distinguishing human individuals using PCA (Principal Component
Analysis), see Fig. 1. The result is so far not satisfying. It is not obvious that it is possible to
distinguish between human individuals in MDSs. Therefore we want to investigate in this paper
whether it is at all possible to do this.

3. Materials and methods
3.1. Choice of experiment

In order to answer the question of whether it is possible to distinguish between human individ-
uals by their MDSs, we designed and conducted an experiment in which six test persons were
given a number of MDSs from three different walking human individuals. The test persons were
asked to put the MDS in three groups, one group for each of the individuals. The MDS in each
group should thus be from the same individual, but not necessarily having a specific identity.
Then we made a statistical hypothesis test so see if the test persons had distributed the MDSs
better than randomly. The rationale behind this test is that if test persons are able to distinguish
between human individuals from their MDSs, then the information is there for distinguishing
by a machine as well.
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Figure 2: Four of the MDSs shown to the six test persons. The MDSs have a random number and were presented
in random order. With four MDSs there must be at least one individual with at least two MDSs.

3.2. Measurement data

The data used in this paper came from an FMCW (Frequency Modulation Continuous Wave)
radar (SIRS 1600 TD by SAAB AB) with linear FM sweeps, carrier frequency of 77 GHz and
horizontal polarization. The range resolution is about 1 m. The Doppler filtering utilizes the
phase shift between different sweeps, like in a pulsed radar. The measurements were a subset of
the ones used in [10].

The measurements were conducted outdoors in Sweden in the summer 2010 on fairly plane
ground covered with short grass. The weather was overcast and somewhat windy. It had rained
earlier but now there was a pause in the rain. The radar targets were two adult men and one
adult woman, which were all walking away obliquely from the radar in a similar way with an
aspect angle of 45°. The elevation angle was about 0°.

3.3. Conducting the experiment

The test persons were given 29 MDSs with two gait cycles in each, see Fig. 2 for some examples.
The test persons were given the same instructions. Since the individuals were walking obliquely,
the gait cycles for left and right step probably were different. It was unknown whether the two-
cycle MDSs started with a left or right step. The test persons were given a maximum of 30 min
to accomplish the task.

3.4. Statistical analysis

We have used a hypothesis test to determine whether the test persons distributed the MDSs
better than randomly. The null hypothesis H, is that the test persons distributed the MDSs
randomly and the alternative hypothesis 7{; that they performed better than that. Let f(i) be
the probability density function (PDF) of the total correctly distributed MDS by six persons
which are distributing randomly. Then a(k) = S°%, f(i) , with K being the total number of
distributed MDSs, will be the significance level if we choose k as the threshold for the total
correctly distributed MDS at or above which we reject H,. The significance level is the risk
to state that the test persons distribute better than random when they do not do that. If the
significance level is sufficiently low, e.g. < 0.5% we reject H, and believe that the test persons
distributed better than random. This PDF we have estimated by Monte Carlo simulations, see
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Figure 3: Significance level a(k) vs. threshold & of the total correctly distributed MDS by six persons which are
distributing randomly. This is the same as 1 — F'(k) where F'(k) is the cumulative distribution function. Shown is
the mean value over 1000 repetitions of the significance level computed from the convolution of six copies of the
PDF for a single test person estimated from 10° Monte Carlo simulations. Left: For all thresholds of the number
of correctly distributed MDSs. Right: A zoom-in around 104.

Fig. 3. We chose a significance level o« = 0.1%.

4. Results

The number of correctly distributed MDSs of the test persons were {14, 17, 22, 14, 15, 22}.
The test persons together distributed 104 MDS correctly. By using the curve in Fig. 3 for 104
correctly distributed MDSs we get a significance level of 3.1 - 10~8. We see that for our chosen
significance level o = 0.1%, we can clearly reject the null hypothesis ;. Therefore we believe
that the test persons extracted information from the MDSs that helped them distribute the human
individuals better than randomly.

5. Discussion

5.1. The statistical test

Our test and statistical analysis indicate that there is information in the MDS to distinguish
between human individuals. However, this might not be true for other human individuals, other
scenarios, for longer time intervals between the MDSs, etc.

Unfortunately, even if the MDSs contain information to distinguish between human individuals,
this says little about how to automatically extract the information.

5.2. Discriminating features

Having established that human test persons improve over randomly distributing MDSs in groups
with the same human individual, the next interesting question is how this is done and whether it
can be formulated in such a way that a machine can do it. Therefore, after having performed the



Figure 4: Illustration of the MDS features used by the most successful test persons. Ellipses (red=dark) are used to
mark regions the first test person pointed out as important, whereas the circles, curves and arrows (white=bright)
are used to illustrate the features the second person looked for.

experiments, the two test persons having the best test results were asked to describe how they
reasoned when distributing the MDSs. The descriptions they provided were not very distinct,
and focused on different aspects of the MDS.

The first test person focused on parts of the MDSs with distinctive energy lines; if they existed,
their length and shape, and if they connected in loops. The test person also pointed out where
he looked for the characteristic lines. The interesting regions are marked by the red ellipses
in Fig. 4. The second test person focused on the shape of the envelope of the MDS; if it was
wide or narrow, if an accentuated dip with negative speed was present, and if the envelope was
concave or convex. Fig. 4 highlights these features in white. Both test persons did their grouping
in steps, first considering what they regarded the strongest feature, and then refined the grouping
using the more weak features.

5.3. Using MDSs to distinguish human individuals

Being able to follow targets throughout a scene is an important factor to gain scene understand-
ing. Relying solely on kinematic information to keep consistent tracks of persons leaving and,
shortly after, reappearing in the scene, or of people with poor spatial separation, is very challeng-
ing. Often the uncertainty in position makes conclusive association impossible. By introducing
a measure on the probability that a target MDS can stem from a previously observed target,
target association performance can be improved, yielding better tracks. To achieve this, a model
of a target’s MDS is learned when the target is well separated from other targets. This model is
later used to recognize the target. Based on the recognition, and the confidence of the algorithm,
the probability of a given MDS to be associated with a given track can be approximated. This
can then be used as a factor in a probability based association method.



6. Conclusions

We have presented an experiment from which we conclude that radar micro-Doppler signatures
of walking humans likely contain information to distinguish between different human individu-
als. We have also discussed features in the MDSs which could be utilized to make this possible.
Finally we point out that this ability can be used to enhance target association and tracking in
order to improve the classification of the target type and activity.
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ABSTRACT

Radar (RAdio Detection And Ranging) uses radio
waves to detect the presence of a target and mea-
sure its position and other properties. This sensor
has found many civilian and military applications due
to advantages such as possible large surveillance
areas and operation day and night and in all weather.
The contributions of this thesis are within applied
signal processing for radar in two somewhat sepa-
rate research areas: |) radar with array antennas
and 2) radar with micro-Doppler measurements.

Radar with array antennas: An array antenna
consists of several small antennas in the same spa-
ce as a single large antenna. Compared to a tradi-
tional single-antenna radar, an array antenna radar
gives higher flexibility, higher capacity, several radar
functions simultaneously and increased reliability,
and makes new types of signal processing possible
which give new functions and higher performance.

The contributions on array antenna radar in this
thesis are in three different problem areas.The first
is High Resolution DOA (Direction Of Arrival) Es-
timation (HRDE) as applied to radar and using real
measurement data. HRDE is useful in several app-
lications, including radar applications, to give new
functions and improve the performance.The second
problem area is suppression of interference (clutter,
direct path jamming and scattered jamming) which
often is necessary in order to detect and localize
the target. The thesis presents various results on

2017:02

interference signal properties, antenna geometry
and sub-array design, and on interference suppres-
sion methods. The third problem area is measure-
ment techniques for which the thesis suggests two
measurement designs, one for radar-like measure-
ments and one for scattered signal measurements.

Radar with micro-Doppler measurements: There is
an increasing interest and need for safety, security
and military surveillance at short distances. Tasks
include detecting targets, such as humans, animals,
cars, boats, small aircraft and consumer drones;
classifying the target type and target activity; dis-
tinguishing between target individuals; and also pre-
dicting target intention. An approach is to employ
micro-Doppler radar to perform these tasks. Mi-
cro-Doppler is created by the movement of inter-
nal parts of the target, like arms and legs of humans
and animals, wheels of cars and rotors of drones.

Using micro-Doppler, this thesis presents re-
sults on feature extraction for classification; on
classification of targets types (humans, animals
and man-made objects) and human gaits; and
on information in micro-Doppler signatures for
re-identification of the same human
It also demonstrates the ability to use different
kinds of radars for micro-Doppler measurements.
The main conclusion about micro-Doppler ra-
dar is that it should be possible to use for safe-
ty, security and military surveillance applications.
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